Metamath Proof Explorer


Theorem inelpisys

Description: Pi-systems are closed under pairwise intersections. (Contributed by Thierry Arnoux, 6-Jul-2020)

Ref Expression
Hypothesis ispisys.p 𝑃 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( fi ‘ 𝑠 ) ⊆ 𝑠 }
Assertion inelpisys ( ( 𝑆𝑃𝐴𝑆𝐵𝑆 ) → ( 𝐴𝐵 ) ∈ 𝑆 )

Proof

Step Hyp Ref Expression
1 ispisys.p 𝑃 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( fi ‘ 𝑠 ) ⊆ 𝑠 }
2 intprg ( ( 𝐴𝑆𝐵𝑆 ) → { 𝐴 , 𝐵 } = ( 𝐴𝐵 ) )
3 2 3adant1 ( ( 𝑆𝑃𝐴𝑆𝐵𝑆 ) → { 𝐴 , 𝐵 } = ( 𝐴𝐵 ) )
4 inteq ( 𝑥 = { 𝐴 , 𝐵 } → 𝑥 = { 𝐴 , 𝐵 } )
5 4 eleq1d ( 𝑥 = { 𝐴 , 𝐵 } → ( 𝑥𝑆 { 𝐴 , 𝐵 } ∈ 𝑆 ) )
6 1 ispisys2 ( 𝑆𝑃 ↔ ( 𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∀ 𝑥 ∈ ( ( 𝒫 𝑆 ∩ Fin ) ∖ { ∅ } ) 𝑥𝑆 ) )
7 6 simprbi ( 𝑆𝑃 → ∀ 𝑥 ∈ ( ( 𝒫 𝑆 ∩ Fin ) ∖ { ∅ } ) 𝑥𝑆 )
8 7 3ad2ant1 ( ( 𝑆𝑃𝐴𝑆𝐵𝑆 ) → ∀ 𝑥 ∈ ( ( 𝒫 𝑆 ∩ Fin ) ∖ { ∅ } ) 𝑥𝑆 )
9 prelpwi ( ( 𝐴𝑆𝐵𝑆 ) → { 𝐴 , 𝐵 } ∈ 𝒫 𝑆 )
10 9 3adant1 ( ( 𝑆𝑃𝐴𝑆𝐵𝑆 ) → { 𝐴 , 𝐵 } ∈ 𝒫 𝑆 )
11 prfi { 𝐴 , 𝐵 } ∈ Fin
12 11 a1i ( ( 𝑆𝑃𝐴𝑆𝐵𝑆 ) → { 𝐴 , 𝐵 } ∈ Fin )
13 10 12 elind ( ( 𝑆𝑃𝐴𝑆𝐵𝑆 ) → { 𝐴 , 𝐵 } ∈ ( 𝒫 𝑆 ∩ Fin ) )
14 prnzg ( 𝐴𝑆 → { 𝐴 , 𝐵 } ≠ ∅ )
15 14 3ad2ant2 ( ( 𝑆𝑃𝐴𝑆𝐵𝑆 ) → { 𝐴 , 𝐵 } ≠ ∅ )
16 15 neneqd ( ( 𝑆𝑃𝐴𝑆𝐵𝑆 ) → ¬ { 𝐴 , 𝐵 } = ∅ )
17 elsni ( { 𝐴 , 𝐵 } ∈ { ∅ } → { 𝐴 , 𝐵 } = ∅ )
18 16 17 nsyl ( ( 𝑆𝑃𝐴𝑆𝐵𝑆 ) → ¬ { 𝐴 , 𝐵 } ∈ { ∅ } )
19 13 18 eldifd ( ( 𝑆𝑃𝐴𝑆𝐵𝑆 ) → { 𝐴 , 𝐵 } ∈ ( ( 𝒫 𝑆 ∩ Fin ) ∖ { ∅ } ) )
20 5 8 19 rspcdva ( ( 𝑆𝑃𝐴𝑆𝐵𝑆 ) → { 𝐴 , 𝐵 } ∈ 𝑆 )
21 3 20 eqeltrrd ( ( 𝑆𝑃𝐴𝑆𝐵𝑆 ) → ( 𝐴𝐵 ) ∈ 𝑆 )