Metamath Proof Explorer


Theorem inelpisys

Description: Pi-systems are closed under pairwise intersections. (Contributed by Thierry Arnoux, 6-Jul-2020)

Ref Expression
Hypothesis ispisys.p P=s𝒫𝒫O|fiss
Assertion inelpisys SPASBSABS

Proof

Step Hyp Ref Expression
1 ispisys.p P=s𝒫𝒫O|fiss
2 intprg ASBSAB=AB
3 2 3adant1 SPASBSAB=AB
4 inteq x=ABx=AB
5 4 eleq1d x=ABxSABS
6 1 ispisys2 SPS𝒫𝒫Ox𝒫SFinxS
7 6 simprbi SPx𝒫SFinxS
8 7 3ad2ant1 SPASBSx𝒫SFinxS
9 prelpwi ASBSAB𝒫S
10 9 3adant1 SPASBSAB𝒫S
11 prfi ABFin
12 11 a1i SPASBSABFin
13 10 12 elind SPASBSAB𝒫SFin
14 prnzg ASAB
15 14 3ad2ant2 SPASBSAB
16 15 neneqd SPASBS¬AB=
17 elsni ABAB=
18 16 17 nsyl SPASBS¬AB
19 13 18 eldifd SPASBSAB𝒫SFin
20 5 8 19 rspcdva SPASBSABS
21 3 20 eqeltrrd SPASBSABS