Metamath Proof Explorer


Theorem inelpisys

Description: Pi-systems are closed under pairwise intersections. (Contributed by Thierry Arnoux, 6-Jul-2020)

Ref Expression
Hypothesis ispisys.p P = s 𝒫 𝒫 O | fi s s
Assertion inelpisys S P A S B S A B S

Proof

Step Hyp Ref Expression
1 ispisys.p P = s 𝒫 𝒫 O | fi s s
2 intprg A S B S A B = A B
3 2 3adant1 S P A S B S A B = A B
4 inteq x = A B x = A B
5 4 eleq1d x = A B x S A B S
6 1 ispisys2 S P S 𝒫 𝒫 O x 𝒫 S Fin x S
7 6 simprbi S P x 𝒫 S Fin x S
8 7 3ad2ant1 S P A S B S x 𝒫 S Fin x S
9 prelpwi A S B S A B 𝒫 S
10 9 3adant1 S P A S B S A B 𝒫 S
11 prfi A B Fin
12 11 a1i S P A S B S A B Fin
13 10 12 elind S P A S B S A B 𝒫 S Fin
14 prnzg A S A B
15 14 3ad2ant2 S P A S B S A B
16 15 neneqd S P A S B S ¬ A B =
17 elsni A B A B =
18 16 17 nsyl S P A S B S ¬ A B
19 13 18 eldifd S P A S B S A B 𝒫 S Fin
20 5 8 19 rspcdva S P A S B S A B S
21 3 20 eqeltrrd S P A S B S A B S