Metamath Proof Explorer


Theorem ispisys2

Description: The property of being a pi-system, expanded version. Pi-systems are closed under finite intersections. (Contributed by Thierry Arnoux, 13-Jun-2020)

Ref Expression
Hypothesis ispisys.p P = s 𝒫 𝒫 O | fi s s
Assertion ispisys2 S P S 𝒫 𝒫 O x 𝒫 S Fin x S

Proof

Step Hyp Ref Expression
1 ispisys.p P = s 𝒫 𝒫 O | fi s s
2 1 ispisys S P S 𝒫 𝒫 O fi S S
3 dfss3 fi S S y fi S y S
4 elex S 𝒫 𝒫 O S V
5 4 adantr S 𝒫 𝒫 O x 𝒫 S Fin S V
6 simpr S 𝒫 𝒫 O x 𝒫 S Fin x 𝒫 S Fin
7 eldifsn x 𝒫 S Fin x 𝒫 S Fin x
8 6 7 sylib S 𝒫 𝒫 O x 𝒫 S Fin x 𝒫 S Fin x
9 8 simpld S 𝒫 𝒫 O x 𝒫 S Fin x 𝒫 S Fin
10 9 elin1d S 𝒫 𝒫 O x 𝒫 S Fin x 𝒫 S
11 10 elpwid S 𝒫 𝒫 O x 𝒫 S Fin x S
12 8 simprd S 𝒫 𝒫 O x 𝒫 S Fin x
13 9 elin2d S 𝒫 𝒫 O x 𝒫 S Fin x Fin
14 elfir S V x S x x Fin x fi S
15 5 11 12 13 14 syl13anc S 𝒫 𝒫 O x 𝒫 S Fin x fi S
16 elfi2 S 𝒫 𝒫 O y fi S x 𝒫 S Fin y = x
17 16 biimpa S 𝒫 𝒫 O y fi S x 𝒫 S Fin y = x
18 simpr S 𝒫 𝒫 O y = x y = x
19 18 eleq1d S 𝒫 𝒫 O y = x y S x S
20 15 17 19 ralxfrd S 𝒫 𝒫 O y fi S y S x 𝒫 S Fin x S
21 3 20 syl5bb S 𝒫 𝒫 O fi S S x 𝒫 S Fin x S
22 21 pm5.32i S 𝒫 𝒫 O fi S S S 𝒫 𝒫 O x 𝒫 S Fin x S
23 2 22 bitri S P S 𝒫 𝒫 O x 𝒫 S Fin x S