Metamath Proof Explorer


Theorem elfir

Description: Sufficient condition for an element of ( fiB ) . (Contributed by Mario Carneiro, 24-Nov-2013)

Ref Expression
Assertion elfir BVABAAFinAfiB

Proof

Step Hyp Ref Expression
1 simp1 ABAAFinAB
2 elpw2g BVA𝒫BAB
3 1 2 imbitrrid BVABAAFinA𝒫B
4 3 imp BVABAAFinA𝒫B
5 simpr3 BVABAAFinAFin
6 4 5 elind BVABAAFinA𝒫BFin
7 eqid A=A
8 inteq x=Ax=A
9 8 rspceeqv A𝒫BFinA=Ax𝒫BFinA=x
10 6 7 9 sylancl BVABAAFinx𝒫BFinA=x
11 simp2 ABAAFinA
12 intex AAV
13 11 12 sylib ABAAFinAV
14 id BVBV
15 elfi AVBVAfiBx𝒫BFinA=x
16 13 14 15 syl2anr BVABAAFinAfiBx𝒫BFinA=x
17 10 16 mpbird BVABAAFinAfiB