Metamath Proof Explorer


Theorem intrnfi

Description: Sufficient condition for the intersection of the range of a function to be in the set of finite intersections. (Contributed by Mario Carneiro, 30-Aug-2015)

Ref Expression
Assertion intrnfi BVF:ABAAFinranFfiB

Proof

Step Hyp Ref Expression
1 simpr1 BVF:ABAAFinF:AB
2 1 frnd BVF:ABAAFinranFB
3 1 fdmd BVF:ABAAFindomF=A
4 simpr2 BVF:ABAAFinA
5 3 4 eqnetrd BVF:ABAAFindomF
6 dm0rn0 domF=ranF=
7 6 necon3bii domFranF
8 5 7 sylib BVF:ABAAFinranF
9 simpr3 BVF:ABAAFinAFin
10 1 ffnd BVF:ABAAFinFFnA
11 dffn4 FFnAF:AontoranF
12 10 11 sylib BVF:ABAAFinF:AontoranF
13 fofi AFinF:AontoranFranFFin
14 9 12 13 syl2anc BVF:ABAAFinranFFin
15 2 8 14 3jca BVF:ABAAFinranFBranFranFFin
16 elfir BVranFBranFranFFinranFfiB
17 15 16 syldan BVF:ABAAFinranFfiB