| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr1 |
|- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> F : A --> B ) |
| 2 |
1
|
frnd |
|- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> ran F C_ B ) |
| 3 |
1
|
fdmd |
|- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> dom F = A ) |
| 4 |
|
simpr2 |
|- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> A =/= (/) ) |
| 5 |
3 4
|
eqnetrd |
|- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> dom F =/= (/) ) |
| 6 |
|
dm0rn0 |
|- ( dom F = (/) <-> ran F = (/) ) |
| 7 |
6
|
necon3bii |
|- ( dom F =/= (/) <-> ran F =/= (/) ) |
| 8 |
5 7
|
sylib |
|- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> ran F =/= (/) ) |
| 9 |
|
simpr3 |
|- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> A e. Fin ) |
| 10 |
1
|
ffnd |
|- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> F Fn A ) |
| 11 |
|
dffn4 |
|- ( F Fn A <-> F : A -onto-> ran F ) |
| 12 |
10 11
|
sylib |
|- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> F : A -onto-> ran F ) |
| 13 |
|
fofi |
|- ( ( A e. Fin /\ F : A -onto-> ran F ) -> ran F e. Fin ) |
| 14 |
9 12 13
|
syl2anc |
|- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> ran F e. Fin ) |
| 15 |
2 8 14
|
3jca |
|- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> ( ran F C_ B /\ ran F =/= (/) /\ ran F e. Fin ) ) |
| 16 |
|
elfir |
|- ( ( B e. V /\ ( ran F C_ B /\ ran F =/= (/) /\ ran F e. Fin ) ) -> |^| ran F e. ( fi ` B ) ) |
| 17 |
15 16
|
syldan |
|- ( ( B e. V /\ ( F : A --> B /\ A =/= (/) /\ A e. Fin ) ) -> |^| ran F e. ( fi ` B ) ) |