| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dynkin.p | ⊢ 𝑃  =  { 𝑠  ∈  𝒫  𝒫  𝑂  ∣  ( fi ‘ 𝑠 )  ⊆  𝑠 } | 
						
							| 2 |  | dynkin.l | ⊢ 𝐿  =  { 𝑠  ∈  𝒫  𝒫  𝑂  ∣  ( ∅  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝑠 ( 𝑂  ∖  𝑥 )  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝒫  𝑠 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ∪  𝑥  ∈  𝑠 ) ) } | 
						
							| 3 |  | dynkin.o | ⊢ ( 𝜑  →  𝑂  ∈  𝑉 ) | 
						
							| 4 |  | ldgenpisys.e | ⊢ 𝐸  =  ∩  { 𝑡  ∈  𝐿  ∣  𝑇  ⊆  𝑡 } | 
						
							| 5 |  | ldgenpisys.1 | ⊢ ( 𝜑  →  𝑇  ∈  𝑃 ) | 
						
							| 6 |  | ssrab2 | ⊢ { 𝑠  ∈  𝒫  𝒫  𝑂  ∣  ( ∅  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝑠 ( 𝑂  ∖  𝑥 )  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝒫  𝑠 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ∪  𝑥  ∈  𝑠 ) ) }  ⊆  𝒫  𝒫  𝑂 | 
						
							| 7 |  | ssrab2 | ⊢ { 𝑠  ∈  𝒫  𝒫  𝑂  ∣  ( fi ‘ 𝑠 )  ⊆  𝑠 }  ⊆  𝒫  𝒫  𝑂 | 
						
							| 8 | 5 1 | eleqtrdi | ⊢ ( 𝜑  →  𝑇  ∈  { 𝑠  ∈  𝒫  𝒫  𝑂  ∣  ( fi ‘ 𝑠 )  ⊆  𝑠 } ) | 
						
							| 9 | 7 8 | sselid | ⊢ ( 𝜑  →  𝑇  ∈  𝒫  𝒫  𝑂 ) | 
						
							| 10 | 9 | elpwid | ⊢ ( 𝜑  →  𝑇  ⊆  𝒫  𝑂 ) | 
						
							| 11 | 2 3 10 | ldsysgenld | ⊢ ( 𝜑  →  ∩  { 𝑡  ∈  𝐿  ∣  𝑇  ⊆  𝑡 }  ∈  𝐿 ) | 
						
							| 12 | 4 11 | eqeltrid | ⊢ ( 𝜑  →  𝐸  ∈  𝐿 ) | 
						
							| 13 | 12 2 | eleqtrdi | ⊢ ( 𝜑  →  𝐸  ∈  { 𝑠  ∈  𝒫  𝒫  𝑂  ∣  ( ∅  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝑠 ( 𝑂  ∖  𝑥 )  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝒫  𝑠 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ∪  𝑥  ∈  𝑠 ) ) } ) | 
						
							| 14 | 6 13 | sselid | ⊢ ( 𝜑  →  𝐸  ∈  𝒫  𝒫  𝑂 ) | 
						
							| 15 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐸  ∧  𝑏  ∈  𝐸 ) )  →  𝑏  ∈  𝐸 ) | 
						
							| 16 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐸  ∧  𝑏  ∈  𝐸 ) )  →  𝑎  ∈  𝐸 ) | 
						
							| 17 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐸 )  →  𝑂  ∈  𝑉 ) | 
						
							| 18 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐸 )  →  𝑇  ∈  𝑃 ) | 
						
							| 19 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐸 )  →  𝑎  ∈  𝐸 ) | 
						
							| 20 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐸 )  →  𝑇  ⊆  𝒫  𝑂 ) | 
						
							| 21 | 20 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐸 )  ∧  𝑏  ∈  𝑇 )  →  𝑏  ∈  𝒫  𝑂 ) | 
						
							| 22 |  | incom | ⊢ ( 𝑏  ∩  𝑎 )  =  ( 𝑎  ∩  𝑏 ) | 
						
							| 23 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐸 )  ∧  𝑏  ∈  𝑇 )  →  𝑂  ∈  𝑉 ) | 
						
							| 24 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐸 )  ∧  𝑏  ∈  𝑇 )  →  𝑇  ∈  𝑃 ) | 
						
							| 25 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐸 )  ∧  𝑏  ∈  𝑇 )  →  𝑏  ∈  𝑇 ) | 
						
							| 26 | 1 2 23 4 24 25 | ldgenpisyslem3 | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐸 )  ∧  𝑏  ∈  𝑇 )  →  𝐸  ⊆  { 𝑐  ∈  𝒫  𝑂  ∣  ( 𝑏  ∩  𝑐 )  ∈  𝐸 } ) | 
						
							| 27 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐸 )  ∧  𝑏  ∈  𝑇 )  →  𝑎  ∈  𝐸 ) | 
						
							| 28 | 26 27 | sseldd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐸 )  ∧  𝑏  ∈  𝑇 )  →  𝑎  ∈  { 𝑐  ∈  𝒫  𝑂  ∣  ( 𝑏  ∩  𝑐 )  ∈  𝐸 } ) | 
						
							| 29 |  | ineq2 | ⊢ ( 𝑐  =  𝑎  →  ( 𝑏  ∩  𝑐 )  =  ( 𝑏  ∩  𝑎 ) ) | 
						
							| 30 | 29 | eleq1d | ⊢ ( 𝑐  =  𝑎  →  ( ( 𝑏  ∩  𝑐 )  ∈  𝐸  ↔  ( 𝑏  ∩  𝑎 )  ∈  𝐸 ) ) | 
						
							| 31 | 30 | elrab | ⊢ ( 𝑎  ∈  { 𝑐  ∈  𝒫  𝑂  ∣  ( 𝑏  ∩  𝑐 )  ∈  𝐸 }  ↔  ( 𝑎  ∈  𝒫  𝑂  ∧  ( 𝑏  ∩  𝑎 )  ∈  𝐸 ) ) | 
						
							| 32 | 28 31 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐸 )  ∧  𝑏  ∈  𝑇 )  →  ( 𝑎  ∈  𝒫  𝑂  ∧  ( 𝑏  ∩  𝑎 )  ∈  𝐸 ) ) | 
						
							| 33 | 32 | simprd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐸 )  ∧  𝑏  ∈  𝑇 )  →  ( 𝑏  ∩  𝑎 )  ∈  𝐸 ) | 
						
							| 34 | 22 33 | eqeltrrid | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐸 )  ∧  𝑏  ∈  𝑇 )  →  ( 𝑎  ∩  𝑏 )  ∈  𝐸 ) | 
						
							| 35 | 21 34 | jca | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐸 )  ∧  𝑏  ∈  𝑇 )  →  ( 𝑏  ∈  𝒫  𝑂  ∧  ( 𝑎  ∩  𝑏 )  ∈  𝐸 ) ) | 
						
							| 36 |  | ineq2 | ⊢ ( 𝑐  =  𝑏  →  ( 𝑎  ∩  𝑐 )  =  ( 𝑎  ∩  𝑏 ) ) | 
						
							| 37 | 36 | eleq1d | ⊢ ( 𝑐  =  𝑏  →  ( ( 𝑎  ∩  𝑐 )  ∈  𝐸  ↔  ( 𝑎  ∩  𝑏 )  ∈  𝐸 ) ) | 
						
							| 38 | 37 | elrab | ⊢ ( 𝑏  ∈  { 𝑐  ∈  𝒫  𝑂  ∣  ( 𝑎  ∩  𝑐 )  ∈  𝐸 }  ↔  ( 𝑏  ∈  𝒫  𝑂  ∧  ( 𝑎  ∩  𝑏 )  ∈  𝐸 ) ) | 
						
							| 39 | 35 38 | sylibr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝐸 )  ∧  𝑏  ∈  𝑇 )  →  𝑏  ∈  { 𝑐  ∈  𝒫  𝑂  ∣  ( 𝑎  ∩  𝑐 )  ∈  𝐸 } ) | 
						
							| 40 | 39 | ex | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐸 )  →  ( 𝑏  ∈  𝑇  →  𝑏  ∈  { 𝑐  ∈  𝒫  𝑂  ∣  ( 𝑎  ∩  𝑐 )  ∈  𝐸 } ) ) | 
						
							| 41 | 40 | ssrdv | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐸 )  →  𝑇  ⊆  { 𝑐  ∈  𝒫  𝑂  ∣  ( 𝑎  ∩  𝑐 )  ∈  𝐸 } ) | 
						
							| 42 | 1 2 17 4 18 19 41 | ldgenpisyslem2 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐸 )  →  𝐸  ⊆  { 𝑐  ∈  𝒫  𝑂  ∣  ( 𝑎  ∩  𝑐 )  ∈  𝐸 } ) | 
						
							| 43 | 16 42 | syldan | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐸  ∧  𝑏  ∈  𝐸 ) )  →  𝐸  ⊆  { 𝑐  ∈  𝒫  𝑂  ∣  ( 𝑎  ∩  𝑐 )  ∈  𝐸 } ) | 
						
							| 44 |  | ssrab | ⊢ ( 𝐸  ⊆  { 𝑐  ∈  𝒫  𝑂  ∣  ( 𝑎  ∩  𝑐 )  ∈  𝐸 }  ↔  ( 𝐸  ⊆  𝒫  𝑂  ∧  ∀ 𝑐  ∈  𝐸 ( 𝑎  ∩  𝑐 )  ∈  𝐸 ) ) | 
						
							| 45 | 43 44 | sylib | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐸  ∧  𝑏  ∈  𝐸 ) )  →  ( 𝐸  ⊆  𝒫  𝑂  ∧  ∀ 𝑐  ∈  𝐸 ( 𝑎  ∩  𝑐 )  ∈  𝐸 ) ) | 
						
							| 46 | 45 | simprd | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐸  ∧  𝑏  ∈  𝐸 ) )  →  ∀ 𝑐  ∈  𝐸 ( 𝑎  ∩  𝑐 )  ∈  𝐸 ) | 
						
							| 47 | 37 | rspcv | ⊢ ( 𝑏  ∈  𝐸  →  ( ∀ 𝑐  ∈  𝐸 ( 𝑎  ∩  𝑐 )  ∈  𝐸  →  ( 𝑎  ∩  𝑏 )  ∈  𝐸 ) ) | 
						
							| 48 | 15 46 47 | sylc | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐸  ∧  𝑏  ∈  𝐸 ) )  →  ( 𝑎  ∩  𝑏 )  ∈  𝐸 ) | 
						
							| 49 | 48 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  𝐸 ∀ 𝑏  ∈  𝐸 ( 𝑎  ∩  𝑏 )  ∈  𝐸 ) | 
						
							| 50 |  | inficl | ⊢ ( 𝐸  ∈  𝐿  →  ( ∀ 𝑎  ∈  𝐸 ∀ 𝑏  ∈  𝐸 ( 𝑎  ∩  𝑏 )  ∈  𝐸  ↔  ( fi ‘ 𝐸 )  =  𝐸 ) ) | 
						
							| 51 | 12 50 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑎  ∈  𝐸 ∀ 𝑏  ∈  𝐸 ( 𝑎  ∩  𝑏 )  ∈  𝐸  ↔  ( fi ‘ 𝐸 )  =  𝐸 ) ) | 
						
							| 52 | 49 51 | mpbid | ⊢ ( 𝜑  →  ( fi ‘ 𝐸 )  =  𝐸 ) | 
						
							| 53 |  | eqimss | ⊢ ( ( fi ‘ 𝐸 )  =  𝐸  →  ( fi ‘ 𝐸 )  ⊆  𝐸 ) | 
						
							| 54 | 52 53 | syl | ⊢ ( 𝜑  →  ( fi ‘ 𝐸 )  ⊆  𝐸 ) | 
						
							| 55 | 14 54 | jca | ⊢ ( 𝜑  →  ( 𝐸  ∈  𝒫  𝒫  𝑂  ∧  ( fi ‘ 𝐸 )  ⊆  𝐸 ) ) | 
						
							| 56 | 1 | ispisys | ⊢ ( 𝐸  ∈  𝑃  ↔  ( 𝐸  ∈  𝒫  𝒫  𝑂  ∧  ( fi ‘ 𝐸 )  ⊆  𝐸 ) ) | 
						
							| 57 | 55 56 | sylibr | ⊢ ( 𝜑  →  𝐸  ∈  𝑃 ) |