| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dynkin.p | ⊢ 𝑃  =  { 𝑠  ∈  𝒫  𝒫  𝑂  ∣  ( fi ‘ 𝑠 )  ⊆  𝑠 } | 
						
							| 2 |  | dynkin.l | ⊢ 𝐿  =  { 𝑠  ∈  𝒫  𝒫  𝑂  ∣  ( ∅  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝑠 ( 𝑂  ∖  𝑥 )  ∈  𝑠  ∧  ∀ 𝑥  ∈  𝒫  𝑠 ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ∪  𝑥  ∈  𝑠 ) ) } | 
						
							| 3 |  | dynkin.o | ⊢ ( 𝜑  →  𝑂  ∈  𝑉 ) | 
						
							| 4 |  | dynkin.1 | ⊢ ( 𝜑  →  𝑆  ∈  𝐿 ) | 
						
							| 5 |  | dynkin.2 | ⊢ ( 𝜑  →  𝑇  ∈  𝑃 ) | 
						
							| 6 |  | dynkin.3 | ⊢ ( 𝜑  →  𝑇  ⊆  𝑆 ) | 
						
							| 7 |  | sseq2 | ⊢ ( 𝑣  =  𝑡  →  ( 𝑇  ⊆  𝑣  ↔  𝑇  ⊆  𝑡 ) ) | 
						
							| 8 | 7 | cbvrabv | ⊢ { 𝑣  ∈  𝐿  ∣  𝑇  ⊆  𝑣 }  =  { 𝑡  ∈  𝐿  ∣  𝑇  ⊆  𝑡 } | 
						
							| 9 | 8 | inteqi | ⊢ ∩  { 𝑣  ∈  𝐿  ∣  𝑇  ⊆  𝑣 }  =  ∩  { 𝑡  ∈  𝐿  ∣  𝑇  ⊆  𝑡 } | 
						
							| 10 | 1 2 3 9 5 | ldgenpisys | ⊢ ( 𝜑  →  ∩  { 𝑣  ∈  𝐿  ∣  𝑇  ⊆  𝑣 }  ∈  𝑃 ) | 
						
							| 11 | 1 | ispisys2 | ⊢ ( 𝑇  ∈  𝑃  ↔  ( 𝑇  ∈  𝒫  𝒫  𝑂  ∧  ∀ 𝑥  ∈  ( ( 𝒫  𝑇  ∩  Fin )  ∖  { ∅ } ) ∩  𝑥  ∈  𝑇 ) ) | 
						
							| 12 | 11 | simplbi | ⊢ ( 𝑇  ∈  𝑃  →  𝑇  ∈  𝒫  𝒫  𝑂 ) | 
						
							| 13 | 5 12 | syl | ⊢ ( 𝜑  →  𝑇  ∈  𝒫  𝒫  𝑂 ) | 
						
							| 14 | 13 | elpwid | ⊢ ( 𝜑  →  𝑇  ⊆  𝒫  𝑂 ) | 
						
							| 15 | 2 3 14 | ldsysgenld | ⊢ ( 𝜑  →  ∩  { 𝑣  ∈  𝐿  ∣  𝑇  ⊆  𝑣 }  ∈  𝐿 ) | 
						
							| 16 | 10 15 | elind | ⊢ ( 𝜑  →  ∩  { 𝑣  ∈  𝐿  ∣  𝑇  ⊆  𝑣 }  ∈  ( 𝑃  ∩  𝐿 ) ) | 
						
							| 17 | 1 2 | sigapildsys | ⊢ ( sigAlgebra ‘ 𝑂 )  =  ( 𝑃  ∩  𝐿 ) | 
						
							| 18 | 16 17 | eleqtrrdi | ⊢ ( 𝜑  →  ∩  { 𝑣  ∈  𝐿  ∣  𝑇  ⊆  𝑣 }  ∈  ( sigAlgebra ‘ 𝑂 ) ) | 
						
							| 19 |  | ssintub | ⊢ 𝑇  ⊆  ∩  { 𝑣  ∈  𝐿  ∣  𝑇  ⊆  𝑣 } | 
						
							| 20 | 19 | a1i | ⊢ ( 𝜑  →  𝑇  ⊆  ∩  { 𝑣  ∈  𝐿  ∣  𝑇  ⊆  𝑣 } ) | 
						
							| 21 |  | sseq2 | ⊢ ( 𝑢  =  ∩  { 𝑣  ∈  𝐿  ∣  𝑇  ⊆  𝑣 }  →  ( 𝑇  ⊆  𝑢  ↔  𝑇  ⊆  ∩  { 𝑣  ∈  𝐿  ∣  𝑇  ⊆  𝑣 } ) ) | 
						
							| 22 | 21 | intminss | ⊢ ( ( ∩  { 𝑣  ∈  𝐿  ∣  𝑇  ⊆  𝑣 }  ∈  ( sigAlgebra ‘ 𝑂 )  ∧  𝑇  ⊆  ∩  { 𝑣  ∈  𝐿  ∣  𝑇  ⊆  𝑣 } )  →  ∩  { 𝑢  ∈  ( sigAlgebra ‘ 𝑂 )  ∣  𝑇  ⊆  𝑢 }  ⊆  ∩  { 𝑣  ∈  𝐿  ∣  𝑇  ⊆  𝑣 } ) | 
						
							| 23 | 18 20 22 | syl2anc | ⊢ ( 𝜑  →  ∩  { 𝑢  ∈  ( sigAlgebra ‘ 𝑂 )  ∣  𝑇  ⊆  𝑢 }  ⊆  ∩  { 𝑣  ∈  𝐿  ∣  𝑇  ⊆  𝑣 } ) | 
						
							| 24 |  | sseq2 | ⊢ ( 𝑣  =  𝑆  →  ( 𝑇  ⊆  𝑣  ↔  𝑇  ⊆  𝑆 ) ) | 
						
							| 25 | 24 | intminss | ⊢ ( ( 𝑆  ∈  𝐿  ∧  𝑇  ⊆  𝑆 )  →  ∩  { 𝑣  ∈  𝐿  ∣  𝑇  ⊆  𝑣 }  ⊆  𝑆 ) | 
						
							| 26 | 4 6 25 | syl2anc | ⊢ ( 𝜑  →  ∩  { 𝑣  ∈  𝐿  ∣  𝑇  ⊆  𝑣 }  ⊆  𝑆 ) | 
						
							| 27 | 23 26 | sstrd | ⊢ ( 𝜑  →  ∩  { 𝑢  ∈  ( sigAlgebra ‘ 𝑂 )  ∣  𝑇  ⊆  𝑢 }  ⊆  𝑆 ) |