Step |
Hyp |
Ref |
Expression |
1 |
|
dynkin.p |
⊢ 𝑃 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( fi ‘ 𝑠 ) ⊆ 𝑠 } |
2 |
|
dynkin.l |
⊢ 𝐿 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ( 𝑂 ∖ 𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ∪ 𝑥 ∈ 𝑠 ) ) } |
3 |
|
dynkin.o |
⊢ ( 𝜑 → 𝑂 ∈ 𝑉 ) |
4 |
|
dynkin.1 |
⊢ ( 𝜑 → 𝑆 ∈ 𝐿 ) |
5 |
|
dynkin.2 |
⊢ ( 𝜑 → 𝑇 ∈ 𝑃 ) |
6 |
|
dynkin.3 |
⊢ ( 𝜑 → 𝑇 ⊆ 𝑆 ) |
7 |
|
sseq2 |
⊢ ( 𝑣 = 𝑡 → ( 𝑇 ⊆ 𝑣 ↔ 𝑇 ⊆ 𝑡 ) ) |
8 |
7
|
cbvrabv |
⊢ { 𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣 } = { 𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡 } |
9 |
8
|
inteqi |
⊢ ∩ { 𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣 } = ∩ { 𝑡 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑡 } |
10 |
1 2 3 9 5
|
ldgenpisys |
⊢ ( 𝜑 → ∩ { 𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣 } ∈ 𝑃 ) |
11 |
1
|
ispisys2 |
⊢ ( 𝑇 ∈ 𝑃 ↔ ( 𝑇 ∈ 𝒫 𝒫 𝑂 ∧ ∀ 𝑥 ∈ ( ( 𝒫 𝑇 ∩ Fin ) ∖ { ∅ } ) ∩ 𝑥 ∈ 𝑇 ) ) |
12 |
11
|
simplbi |
⊢ ( 𝑇 ∈ 𝑃 → 𝑇 ∈ 𝒫 𝒫 𝑂 ) |
13 |
5 12
|
syl |
⊢ ( 𝜑 → 𝑇 ∈ 𝒫 𝒫 𝑂 ) |
14 |
13
|
elpwid |
⊢ ( 𝜑 → 𝑇 ⊆ 𝒫 𝑂 ) |
15 |
2 3 14
|
ldsysgenld |
⊢ ( 𝜑 → ∩ { 𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣 } ∈ 𝐿 ) |
16 |
10 15
|
elind |
⊢ ( 𝜑 → ∩ { 𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣 } ∈ ( 𝑃 ∩ 𝐿 ) ) |
17 |
1 2
|
sigapildsys |
⊢ ( sigAlgebra ‘ 𝑂 ) = ( 𝑃 ∩ 𝐿 ) |
18 |
16 17
|
eleqtrrdi |
⊢ ( 𝜑 → ∩ { 𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣 } ∈ ( sigAlgebra ‘ 𝑂 ) ) |
19 |
|
ssintub |
⊢ 𝑇 ⊆ ∩ { 𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣 } |
20 |
19
|
a1i |
⊢ ( 𝜑 → 𝑇 ⊆ ∩ { 𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣 } ) |
21 |
|
sseq2 |
⊢ ( 𝑢 = ∩ { 𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣 } → ( 𝑇 ⊆ 𝑢 ↔ 𝑇 ⊆ ∩ { 𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣 } ) ) |
22 |
21
|
intminss |
⊢ ( ( ∩ { 𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣 } ∈ ( sigAlgebra ‘ 𝑂 ) ∧ 𝑇 ⊆ ∩ { 𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣 } ) → ∩ { 𝑢 ∈ ( sigAlgebra ‘ 𝑂 ) ∣ 𝑇 ⊆ 𝑢 } ⊆ ∩ { 𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣 } ) |
23 |
18 20 22
|
syl2anc |
⊢ ( 𝜑 → ∩ { 𝑢 ∈ ( sigAlgebra ‘ 𝑂 ) ∣ 𝑇 ⊆ 𝑢 } ⊆ ∩ { 𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣 } ) |
24 |
|
sseq2 |
⊢ ( 𝑣 = 𝑆 → ( 𝑇 ⊆ 𝑣 ↔ 𝑇 ⊆ 𝑆 ) ) |
25 |
24
|
intminss |
⊢ ( ( 𝑆 ∈ 𝐿 ∧ 𝑇 ⊆ 𝑆 ) → ∩ { 𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣 } ⊆ 𝑆 ) |
26 |
4 6 25
|
syl2anc |
⊢ ( 𝜑 → ∩ { 𝑣 ∈ 𝐿 ∣ 𝑇 ⊆ 𝑣 } ⊆ 𝑆 ) |
27 |
23 26
|
sstrd |
⊢ ( 𝜑 → ∩ { 𝑢 ∈ ( sigAlgebra ‘ 𝑂 ) ∣ 𝑇 ⊆ 𝑢 } ⊆ 𝑆 ) |