Metamath Proof Explorer


Theorem dynkin

Description: Dynkin's lambda-pi theorem: if a lambda-system contains a pi-system, it also contains the sigma-algebra generated by that pi-system. (Contributed by Thierry Arnoux, 16-Jun-2020)

Ref Expression
Hypotheses dynkin.p 𝑃 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( fi ‘ 𝑠 ) ⊆ 𝑠 }
dynkin.l 𝐿 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥𝑠 ( 𝑂𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑠 ) ) }
dynkin.o ( 𝜑𝑂𝑉 )
dynkin.1 ( 𝜑𝑆𝐿 )
dynkin.2 ( 𝜑𝑇𝑃 )
dynkin.3 ( 𝜑𝑇𝑆 )
Assertion dynkin ( 𝜑 { 𝑢 ∈ ( sigAlgebra ‘ 𝑂 ) ∣ 𝑇𝑢 } ⊆ 𝑆 )

Proof

Step Hyp Ref Expression
1 dynkin.p 𝑃 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( fi ‘ 𝑠 ) ⊆ 𝑠 }
2 dynkin.l 𝐿 = { 𝑠 ∈ 𝒫 𝒫 𝑂 ∣ ( ∅ ∈ 𝑠 ∧ ∀ 𝑥𝑠 ( 𝑂𝑥 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → 𝑥𝑠 ) ) }
3 dynkin.o ( 𝜑𝑂𝑉 )
4 dynkin.1 ( 𝜑𝑆𝐿 )
5 dynkin.2 ( 𝜑𝑇𝑃 )
6 dynkin.3 ( 𝜑𝑇𝑆 )
7 sseq2 ( 𝑣 = 𝑡 → ( 𝑇𝑣𝑇𝑡 ) )
8 7 cbvrabv { 𝑣𝐿𝑇𝑣 } = { 𝑡𝐿𝑇𝑡 }
9 8 inteqi { 𝑣𝐿𝑇𝑣 } = { 𝑡𝐿𝑇𝑡 }
10 1 2 3 9 5 ldgenpisys ( 𝜑 { 𝑣𝐿𝑇𝑣 } ∈ 𝑃 )
11 1 ispisys2 ( 𝑇𝑃 ↔ ( 𝑇 ∈ 𝒫 𝒫 𝑂 ∧ ∀ 𝑥 ∈ ( ( 𝒫 𝑇 ∩ Fin ) ∖ { ∅ } ) 𝑥𝑇 ) )
12 11 simplbi ( 𝑇𝑃𝑇 ∈ 𝒫 𝒫 𝑂 )
13 5 12 syl ( 𝜑𝑇 ∈ 𝒫 𝒫 𝑂 )
14 13 elpwid ( 𝜑𝑇 ⊆ 𝒫 𝑂 )
15 2 3 14 ldsysgenld ( 𝜑 { 𝑣𝐿𝑇𝑣 } ∈ 𝐿 )
16 10 15 elind ( 𝜑 { 𝑣𝐿𝑇𝑣 } ∈ ( 𝑃𝐿 ) )
17 1 2 sigapildsys ( sigAlgebra ‘ 𝑂 ) = ( 𝑃𝐿 )
18 16 17 eleqtrrdi ( 𝜑 { 𝑣𝐿𝑇𝑣 } ∈ ( sigAlgebra ‘ 𝑂 ) )
19 ssintub 𝑇 { 𝑣𝐿𝑇𝑣 }
20 19 a1i ( 𝜑𝑇 { 𝑣𝐿𝑇𝑣 } )
21 sseq2 ( 𝑢 = { 𝑣𝐿𝑇𝑣 } → ( 𝑇𝑢𝑇 { 𝑣𝐿𝑇𝑣 } ) )
22 21 intminss ( ( { 𝑣𝐿𝑇𝑣 } ∈ ( sigAlgebra ‘ 𝑂 ) ∧ 𝑇 { 𝑣𝐿𝑇𝑣 } ) → { 𝑢 ∈ ( sigAlgebra ‘ 𝑂 ) ∣ 𝑇𝑢 } ⊆ { 𝑣𝐿𝑇𝑣 } )
23 18 20 22 syl2anc ( 𝜑 { 𝑢 ∈ ( sigAlgebra ‘ 𝑂 ) ∣ 𝑇𝑢 } ⊆ { 𝑣𝐿𝑇𝑣 } )
24 sseq2 ( 𝑣 = 𝑆 → ( 𝑇𝑣𝑇𝑆 ) )
25 24 intminss ( ( 𝑆𝐿𝑇𝑆 ) → { 𝑣𝐿𝑇𝑣 } ⊆ 𝑆 )
26 4 6 25 syl2anc ( 𝜑 { 𝑣𝐿𝑇𝑣 } ⊆ 𝑆 )
27 23 26 sstrd ( 𝜑 { 𝑢 ∈ ( sigAlgebra ‘ 𝑂 ) ∣ 𝑇𝑢 } ⊆ 𝑆 )