Step |
Hyp |
Ref |
Expression |
1 |
|
dynkin.p |
|- P = { s e. ~P ~P O | ( fi ` s ) C_ s } |
2 |
|
dynkin.l |
|- L = { s e. ~P ~P O | ( (/) e. s /\ A. x e. s ( O \ x ) e. s /\ A. x e. ~P s ( ( x ~<_ _om /\ Disj_ y e. x y ) -> U. x e. s ) ) } |
3 |
|
dynkin.o |
|- ( ph -> O e. V ) |
4 |
|
dynkin.1 |
|- ( ph -> S e. L ) |
5 |
|
dynkin.2 |
|- ( ph -> T e. P ) |
6 |
|
dynkin.3 |
|- ( ph -> T C_ S ) |
7 |
|
sseq2 |
|- ( v = t -> ( T C_ v <-> T C_ t ) ) |
8 |
7
|
cbvrabv |
|- { v e. L | T C_ v } = { t e. L | T C_ t } |
9 |
8
|
inteqi |
|- |^| { v e. L | T C_ v } = |^| { t e. L | T C_ t } |
10 |
1 2 3 9 5
|
ldgenpisys |
|- ( ph -> |^| { v e. L | T C_ v } e. P ) |
11 |
1
|
ispisys2 |
|- ( T e. P <-> ( T e. ~P ~P O /\ A. x e. ( ( ~P T i^i Fin ) \ { (/) } ) |^| x e. T ) ) |
12 |
11
|
simplbi |
|- ( T e. P -> T e. ~P ~P O ) |
13 |
5 12
|
syl |
|- ( ph -> T e. ~P ~P O ) |
14 |
13
|
elpwid |
|- ( ph -> T C_ ~P O ) |
15 |
2 3 14
|
ldsysgenld |
|- ( ph -> |^| { v e. L | T C_ v } e. L ) |
16 |
10 15
|
elind |
|- ( ph -> |^| { v e. L | T C_ v } e. ( P i^i L ) ) |
17 |
1 2
|
sigapildsys |
|- ( sigAlgebra ` O ) = ( P i^i L ) |
18 |
16 17
|
eleqtrrdi |
|- ( ph -> |^| { v e. L | T C_ v } e. ( sigAlgebra ` O ) ) |
19 |
|
ssintub |
|- T C_ |^| { v e. L | T C_ v } |
20 |
19
|
a1i |
|- ( ph -> T C_ |^| { v e. L | T C_ v } ) |
21 |
|
sseq2 |
|- ( u = |^| { v e. L | T C_ v } -> ( T C_ u <-> T C_ |^| { v e. L | T C_ v } ) ) |
22 |
21
|
intminss |
|- ( ( |^| { v e. L | T C_ v } e. ( sigAlgebra ` O ) /\ T C_ |^| { v e. L | T C_ v } ) -> |^| { u e. ( sigAlgebra ` O ) | T C_ u } C_ |^| { v e. L | T C_ v } ) |
23 |
18 20 22
|
syl2anc |
|- ( ph -> |^| { u e. ( sigAlgebra ` O ) | T C_ u } C_ |^| { v e. L | T C_ v } ) |
24 |
|
sseq2 |
|- ( v = S -> ( T C_ v <-> T C_ S ) ) |
25 |
24
|
intminss |
|- ( ( S e. L /\ T C_ S ) -> |^| { v e. L | T C_ v } C_ S ) |
26 |
4 6 25
|
syl2anc |
|- ( ph -> |^| { v e. L | T C_ v } C_ S ) |
27 |
23 26
|
sstrd |
|- ( ph -> |^| { u e. ( sigAlgebra ` O ) | T C_ u } C_ S ) |