| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dynkin.p |  |-  P = { s e. ~P ~P O | ( fi ` s ) C_ s } | 
						
							| 2 |  | dynkin.l |  |-  L = { s e. ~P ~P O | ( (/) e. s /\ A. x e. s ( O \ x ) e. s /\ A. x e. ~P s ( ( x ~<_ _om /\ Disj_ y e. x y ) -> U. x e. s ) ) } | 
						
							| 3 |  | dynkin.o |  |-  ( ph -> O e. V ) | 
						
							| 4 |  | dynkin.1 |  |-  ( ph -> S e. L ) | 
						
							| 5 |  | dynkin.2 |  |-  ( ph -> T e. P ) | 
						
							| 6 |  | dynkin.3 |  |-  ( ph -> T C_ S ) | 
						
							| 7 |  | sseq2 |  |-  ( v = t -> ( T C_ v <-> T C_ t ) ) | 
						
							| 8 | 7 | cbvrabv |  |-  { v e. L | T C_ v } = { t e. L | T C_ t } | 
						
							| 9 | 8 | inteqi |  |-  |^| { v e. L | T C_ v } = |^| { t e. L | T C_ t } | 
						
							| 10 | 1 2 3 9 5 | ldgenpisys |  |-  ( ph -> |^| { v e. L | T C_ v } e. P ) | 
						
							| 11 | 1 | ispisys2 |  |-  ( T e. P <-> ( T e. ~P ~P O /\ A. x e. ( ( ~P T i^i Fin ) \ { (/) } ) |^| x e. T ) ) | 
						
							| 12 | 11 | simplbi |  |-  ( T e. P -> T e. ~P ~P O ) | 
						
							| 13 | 5 12 | syl |  |-  ( ph -> T e. ~P ~P O ) | 
						
							| 14 | 13 | elpwid |  |-  ( ph -> T C_ ~P O ) | 
						
							| 15 | 2 3 14 | ldsysgenld |  |-  ( ph -> |^| { v e. L | T C_ v } e. L ) | 
						
							| 16 | 10 15 | elind |  |-  ( ph -> |^| { v e. L | T C_ v } e. ( P i^i L ) ) | 
						
							| 17 | 1 2 | sigapildsys |  |-  ( sigAlgebra ` O ) = ( P i^i L ) | 
						
							| 18 | 16 17 | eleqtrrdi |  |-  ( ph -> |^| { v e. L | T C_ v } e. ( sigAlgebra ` O ) ) | 
						
							| 19 |  | ssintub |  |-  T C_ |^| { v e. L | T C_ v } | 
						
							| 20 | 19 | a1i |  |-  ( ph -> T C_ |^| { v e. L | T C_ v } ) | 
						
							| 21 |  | sseq2 |  |-  ( u = |^| { v e. L | T C_ v } -> ( T C_ u <-> T C_ |^| { v e. L | T C_ v } ) ) | 
						
							| 22 | 21 | intminss |  |-  ( ( |^| { v e. L | T C_ v } e. ( sigAlgebra ` O ) /\ T C_ |^| { v e. L | T C_ v } ) -> |^| { u e. ( sigAlgebra ` O ) | T C_ u } C_ |^| { v e. L | T C_ v } ) | 
						
							| 23 | 18 20 22 | syl2anc |  |-  ( ph -> |^| { u e. ( sigAlgebra ` O ) | T C_ u } C_ |^| { v e. L | T C_ v } ) | 
						
							| 24 |  | sseq2 |  |-  ( v = S -> ( T C_ v <-> T C_ S ) ) | 
						
							| 25 | 24 | intminss |  |-  ( ( S e. L /\ T C_ S ) -> |^| { v e. L | T C_ v } C_ S ) | 
						
							| 26 | 4 6 25 | syl2anc |  |-  ( ph -> |^| { v e. L | T C_ v } C_ S ) | 
						
							| 27 | 23 26 | sstrd |  |-  ( ph -> |^| { u e. ( sigAlgebra ` O ) | T C_ u } C_ S ) |