Metamath Proof Explorer


Theorem dynkin

Description: Dynkin's lambda-pi theorem: if a lambda-system contains a pi-system, it also contains the sigma-algebra generated by that pi-system. (Contributed by Thierry Arnoux, 16-Jun-2020)

Ref Expression
Hypotheses dynkin.p P=s𝒫𝒫O|fiss
dynkin.l L=s𝒫𝒫O|sxsOxsx𝒫sxωDisjyxyxs
dynkin.o φOV
dynkin.1 φSL
dynkin.2 φTP
dynkin.3 φTS
Assertion dynkin φusigAlgebraO|TuS

Proof

Step Hyp Ref Expression
1 dynkin.p P=s𝒫𝒫O|fiss
2 dynkin.l L=s𝒫𝒫O|sxsOxsx𝒫sxωDisjyxyxs
3 dynkin.o φOV
4 dynkin.1 φSL
5 dynkin.2 φTP
6 dynkin.3 φTS
7 sseq2 v=tTvTt
8 7 cbvrabv vL|Tv=tL|Tt
9 8 inteqi vL|Tv=tL|Tt
10 1 2 3 9 5 ldgenpisys φvL|TvP
11 1 ispisys2 TPT𝒫𝒫Ox𝒫TFinxT
12 11 simplbi TPT𝒫𝒫O
13 5 12 syl φT𝒫𝒫O
14 13 elpwid φT𝒫O
15 2 3 14 ldsysgenld φvL|TvL
16 10 15 elind φvL|TvPL
17 1 2 sigapildsys sigAlgebraO=PL
18 16 17 eleqtrrdi φvL|TvsigAlgebraO
19 ssintub TvL|Tv
20 19 a1i φTvL|Tv
21 sseq2 u=vL|TvTuTvL|Tv
22 21 intminss vL|TvsigAlgebraOTvL|TvusigAlgebraO|TuvL|Tv
23 18 20 22 syl2anc φusigAlgebraO|TuvL|Tv
24 sseq2 v=STvTS
25 24 intminss SLTSvL|TvS
26 4 6 25 syl2anc φvL|TvS
27 23 26 sstrd φusigAlgebraO|TuS