Metamath Proof Explorer


Theorem dynkin

Description: Dynkin's lambda-pi theorem: if a lambda-system contains a pi-system, it also contains the sigma-algebra generated by that pi-system. (Contributed by Thierry Arnoux, 16-Jun-2020)

Ref Expression
Hypotheses dynkin.p P = s 𝒫 𝒫 O | fi s s
dynkin.l L = s 𝒫 𝒫 O | s x s O x s x 𝒫 s x ω Disj y x y x s
dynkin.o φ O V
dynkin.1 φ S L
dynkin.2 φ T P
dynkin.3 φ T S
Assertion dynkin φ u sigAlgebra O | T u S

Proof

Step Hyp Ref Expression
1 dynkin.p P = s 𝒫 𝒫 O | fi s s
2 dynkin.l L = s 𝒫 𝒫 O | s x s O x s x 𝒫 s x ω Disj y x y x s
3 dynkin.o φ O V
4 dynkin.1 φ S L
5 dynkin.2 φ T P
6 dynkin.3 φ T S
7 sseq2 v = t T v T t
8 7 cbvrabv v L | T v = t L | T t
9 8 inteqi v L | T v = t L | T t
10 1 2 3 9 5 ldgenpisys φ v L | T v P
11 1 ispisys2 T P T 𝒫 𝒫 O x 𝒫 T Fin x T
12 11 simplbi T P T 𝒫 𝒫 O
13 5 12 syl φ T 𝒫 𝒫 O
14 13 elpwid φ T 𝒫 O
15 2 3 14 ldsysgenld φ v L | T v L
16 10 15 elind φ v L | T v P L
17 1 2 sigapildsys sigAlgebra O = P L
18 16 17 eleqtrrdi φ v L | T v sigAlgebra O
19 ssintub T v L | T v
20 19 a1i φ T v L | T v
21 sseq2 u = v L | T v T u T v L | T v
22 21 intminss v L | T v sigAlgebra O T v L | T v u sigAlgebra O | T u v L | T v
23 18 20 22 syl2anc φ u sigAlgebra O | T u v L | T v
24 sseq2 v = S T v T S
25 24 intminss S L T S v L | T v S
26 4 6 25 syl2anc φ v L | T v S
27 23 26 sstrd φ u sigAlgebra O | T u S