Description: Dynkin's lambda-pi theorem: if a lambda-system contains a pi-system, it also contains the sigma-algebra generated by that pi-system. (Contributed by Thierry Arnoux, 16-Jun-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dynkin.p | |
|
dynkin.l | |
||
dynkin.o | |
||
dynkin.1 | |
||
dynkin.2 | |
||
dynkin.3 | |
||
Assertion | dynkin | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dynkin.p | |
|
2 | dynkin.l | |
|
3 | dynkin.o | |
|
4 | dynkin.1 | |
|
5 | dynkin.2 | |
|
6 | dynkin.3 | |
|
7 | sseq2 | |
|
8 | 7 | cbvrabv | |
9 | 8 | inteqi | |
10 | 1 2 3 9 5 | ldgenpisys | |
11 | 1 | ispisys2 | |
12 | 11 | simplbi | |
13 | 5 12 | syl | |
14 | 13 | elpwid | |
15 | 2 3 14 | ldsysgenld | |
16 | 10 15 | elind | |
17 | 1 2 | sigapildsys | |
18 | 16 17 | eleqtrrdi | |
19 | ssintub | |
|
20 | 19 | a1i | |
21 | sseq2 | |
|
22 | 21 | intminss | |
23 | 18 20 22 | syl2anc | |
24 | sseq2 | |
|
25 | 24 | intminss | |
26 | 4 6 25 | syl2anc | |
27 | 23 26 | sstrd | |