Step |
Hyp |
Ref |
Expression |
1 |
|
dynkin.p |
|
2 |
|
dynkin.l |
|
3 |
|
dynkin.o |
|
4 |
|
ldgenpisys.e |
|
5 |
|
ldgenpisys.1 |
|
6 |
|
ssrab2 |
|
7 |
|
ssrab2 |
|
8 |
5 1
|
eleqtrdi |
|
9 |
7 8
|
sselid |
|
10 |
9
|
elpwid |
|
11 |
2 3 10
|
ldsysgenld |
|
12 |
4 11
|
eqeltrid |
|
13 |
12 2
|
eleqtrdi |
|
14 |
6 13
|
sselid |
|
15 |
|
simprr |
|
16 |
|
simprl |
|
17 |
3
|
adantr |
|
18 |
5
|
adantr |
|
19 |
|
simpr |
|
20 |
10
|
adantr |
|
21 |
20
|
sselda |
|
22 |
|
incom |
|
23 |
3
|
ad2antrr |
|
24 |
5
|
ad2antrr |
|
25 |
|
simpr |
|
26 |
1 2 23 4 24 25
|
ldgenpisyslem3 |
|
27 |
|
simplr |
|
28 |
26 27
|
sseldd |
|
29 |
|
ineq2 |
|
30 |
29
|
eleq1d |
|
31 |
30
|
elrab |
|
32 |
28 31
|
sylib |
|
33 |
32
|
simprd |
|
34 |
22 33
|
eqeltrrid |
|
35 |
21 34
|
jca |
|
36 |
|
ineq2 |
|
37 |
36
|
eleq1d |
|
38 |
37
|
elrab |
|
39 |
35 38
|
sylibr |
|
40 |
39
|
ex |
|
41 |
40
|
ssrdv |
|
42 |
1 2 17 4 18 19 41
|
ldgenpisyslem2 |
|
43 |
16 42
|
syldan |
|
44 |
|
ssrab |
|
45 |
43 44
|
sylib |
|
46 |
45
|
simprd |
|
47 |
37
|
rspcv |
|
48 |
15 46 47
|
sylc |
|
49 |
48
|
ralrimivva |
|
50 |
|
inficl |
|
51 |
12 50
|
syl |
|
52 |
49 51
|
mpbid |
|
53 |
|
eqimss |
|
54 |
52 53
|
syl |
|
55 |
14 54
|
jca |
|
56 |
1
|
ispisys |
|
57 |
55 56
|
sylibr |
|