Metamath Proof Explorer


Theorem ldgenpisys

Description: The lambda system E generated by a pi-system T is also a pi-system. (Contributed by Thierry Arnoux, 18-Jun-2020)

Ref Expression
Hypotheses dynkin.p P = s 𝒫 𝒫 O | fi s s
dynkin.l L = s 𝒫 𝒫 O | s x s O x s x 𝒫 s x ω Disj y x y x s
dynkin.o φ O V
ldgenpisys.e E = t L | T t
ldgenpisys.1 φ T P
Assertion ldgenpisys φ E P

Proof

Step Hyp Ref Expression
1 dynkin.p P = s 𝒫 𝒫 O | fi s s
2 dynkin.l L = s 𝒫 𝒫 O | s x s O x s x 𝒫 s x ω Disj y x y x s
3 dynkin.o φ O V
4 ldgenpisys.e E = t L | T t
5 ldgenpisys.1 φ T P
6 ssrab2 s 𝒫 𝒫 O | s x s O x s x 𝒫 s x ω Disj y x y x s 𝒫 𝒫 O
7 ssrab2 s 𝒫 𝒫 O | fi s s 𝒫 𝒫 O
8 5 1 eleqtrdi φ T s 𝒫 𝒫 O | fi s s
9 7 8 sselid φ T 𝒫 𝒫 O
10 9 elpwid φ T 𝒫 O
11 2 3 10 ldsysgenld φ t L | T t L
12 4 11 eqeltrid φ E L
13 12 2 eleqtrdi φ E s 𝒫 𝒫 O | s x s O x s x 𝒫 s x ω Disj y x y x s
14 6 13 sselid φ E 𝒫 𝒫 O
15 simprr φ a E b E b E
16 simprl φ a E b E a E
17 3 adantr φ a E O V
18 5 adantr φ a E T P
19 simpr φ a E a E
20 10 adantr φ a E T 𝒫 O
21 20 sselda φ a E b T b 𝒫 O
22 incom b a = a b
23 3 ad2antrr φ a E b T O V
24 5 ad2antrr φ a E b T T P
25 simpr φ a E b T b T
26 1 2 23 4 24 25 ldgenpisyslem3 φ a E b T E c 𝒫 O | b c E
27 simplr φ a E b T a E
28 26 27 sseldd φ a E b T a c 𝒫 O | b c E
29 ineq2 c = a b c = b a
30 29 eleq1d c = a b c E b a E
31 30 elrab a c 𝒫 O | b c E a 𝒫 O b a E
32 28 31 sylib φ a E b T a 𝒫 O b a E
33 32 simprd φ a E b T b a E
34 22 33 eqeltrrid φ a E b T a b E
35 21 34 jca φ a E b T b 𝒫 O a b E
36 ineq2 c = b a c = a b
37 36 eleq1d c = b a c E a b E
38 37 elrab b c 𝒫 O | a c E b 𝒫 O a b E
39 35 38 sylibr φ a E b T b c 𝒫 O | a c E
40 39 ex φ a E b T b c 𝒫 O | a c E
41 40 ssrdv φ a E T c 𝒫 O | a c E
42 1 2 17 4 18 19 41 ldgenpisyslem2 φ a E E c 𝒫 O | a c E
43 16 42 syldan φ a E b E E c 𝒫 O | a c E
44 ssrab E c 𝒫 O | a c E E 𝒫 O c E a c E
45 43 44 sylib φ a E b E E 𝒫 O c E a c E
46 45 simprd φ a E b E c E a c E
47 37 rspcv b E c E a c E a b E
48 15 46 47 sylc φ a E b E a b E
49 48 ralrimivva φ a E b E a b E
50 inficl E L a E b E a b E fi E = E
51 12 50 syl φ a E b E a b E fi E = E
52 49 51 mpbid φ fi E = E
53 eqimss fi E = E fi E E
54 52 53 syl φ fi E E
55 14 54 jca φ E 𝒫 𝒫 O fi E E
56 1 ispisys E P E 𝒫 𝒫 O fi E E
57 55 56 sylibr φ E P