Metamath Proof Explorer


Theorem ldgenpisyslem2

Description: Lemma for ldgenpisys . (Contributed by Thierry Arnoux, 18-Jul-2020)

Ref Expression
Hypotheses dynkin.p P = s 𝒫 𝒫 O | fi s s
dynkin.l L = s 𝒫 𝒫 O | s x s O x s x 𝒫 s x ω Disj y x y x s
dynkin.o φ O V
ldgenpisys.e E = t L | T t
ldgenpisys.1 φ T P
ldgenpisyslem1.1 φ A E
ldgenpisyslem2.1 φ T b 𝒫 O | A b E
Assertion ldgenpisyslem2 φ E b 𝒫 O | A b E

Proof

Step Hyp Ref Expression
1 dynkin.p P = s 𝒫 𝒫 O | fi s s
2 dynkin.l L = s 𝒫 𝒫 O | s x s O x s x 𝒫 s x ω Disj y x y x s
3 dynkin.o φ O V
4 ldgenpisys.e E = t L | T t
5 ldgenpisys.1 φ T P
6 ldgenpisyslem1.1 φ A E
7 ldgenpisyslem2.1 φ T b 𝒫 O | A b E
8 1 2 3 4 5 6 ldgenpisyslem1 φ b 𝒫 O | A b E L
9 8 7 jca φ b 𝒫 O | A b E L T b 𝒫 O | A b E
10 sseq2 t = b 𝒫 O | A b E T t T b 𝒫 O | A b E
11 10 elrab b 𝒫 O | A b E t L | T t b 𝒫 O | A b E L T b 𝒫 O | A b E
12 9 11 sylibr φ b 𝒫 O | A b E t L | T t
13 intss1 b 𝒫 O | A b E t L | T t t L | T t b 𝒫 O | A b E
14 12 13 syl φ t L | T t b 𝒫 O | A b E
15 4 14 eqsstrid φ E b 𝒫 O | A b E