Metamath Proof Explorer


Theorem ldgenpisyslem2

Description: Lemma for ldgenpisys . (Contributed by Thierry Arnoux, 18-Jul-2020)

Ref Expression
Hypotheses dynkin.p P=s𝒫𝒫O|fiss
dynkin.l L=s𝒫𝒫O|sxsOxsx𝒫sxωDisjyxyxs
dynkin.o φOV
ldgenpisys.e E=tL|Tt
ldgenpisys.1 φTP
ldgenpisyslem1.1 φAE
ldgenpisyslem2.1 φTb𝒫O|AbE
Assertion ldgenpisyslem2 φEb𝒫O|AbE

Proof

Step Hyp Ref Expression
1 dynkin.p P=s𝒫𝒫O|fiss
2 dynkin.l L=s𝒫𝒫O|sxsOxsx𝒫sxωDisjyxyxs
3 dynkin.o φOV
4 ldgenpisys.e E=tL|Tt
5 ldgenpisys.1 φTP
6 ldgenpisyslem1.1 φAE
7 ldgenpisyslem2.1 φTb𝒫O|AbE
8 1 2 3 4 5 6 ldgenpisyslem1 φb𝒫O|AbEL
9 8 7 jca φb𝒫O|AbELTb𝒫O|AbE
10 sseq2 t=b𝒫O|AbETtTb𝒫O|AbE
11 10 elrab b𝒫O|AbEtL|Ttb𝒫O|AbELTb𝒫O|AbE
12 9 11 sylibr φb𝒫O|AbEtL|Tt
13 intss1 b𝒫O|AbEtL|TttL|Ttb𝒫O|AbE
14 12 13 syl φtL|Ttb𝒫O|AbE
15 4 14 eqsstrid φEb𝒫O|AbE