Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Abstract measure
lambda and pi-Systems, Rings of Sets
ldgenpisyslem2
Next ⟩
ldgenpisyslem3
Metamath Proof Explorer
Ascii
Unicode
Theorem
ldgenpisyslem2
Description:
Lemma for
ldgenpisys
.
(Contributed by
Thierry Arnoux
, 18-Jul-2020)
Ref
Expression
Hypotheses
dynkin.p
⊢
P
=
s
∈
𝒫
𝒫
O
|
fi
⁡
s
⊆
s
dynkin.l
⊢
L
=
s
∈
𝒫
𝒫
O
|
∅
∈
s
∧
∀
x
∈
s
O
∖
x
∈
s
∧
∀
x
∈
𝒫
s
x
≼
ω
∧
Disj
y
∈
x
y
→
⋃
x
∈
s
dynkin.o
⊢
φ
→
O
∈
V
ldgenpisys.e
⊢
E
=
⋂
t
∈
L
|
T
⊆
t
ldgenpisys.1
⊢
φ
→
T
∈
P
ldgenpisyslem1.1
⊢
φ
→
A
∈
E
ldgenpisyslem2.1
⊢
φ
→
T
⊆
b
∈
𝒫
O
|
A
∩
b
∈
E
Assertion
ldgenpisyslem2
⊢
φ
→
E
⊆
b
∈
𝒫
O
|
A
∩
b
∈
E
Proof
Step
Hyp
Ref
Expression
1
dynkin.p
⊢
P
=
s
∈
𝒫
𝒫
O
|
fi
⁡
s
⊆
s
2
dynkin.l
⊢
L
=
s
∈
𝒫
𝒫
O
|
∅
∈
s
∧
∀
x
∈
s
O
∖
x
∈
s
∧
∀
x
∈
𝒫
s
x
≼
ω
∧
Disj
y
∈
x
y
→
⋃
x
∈
s
3
dynkin.o
⊢
φ
→
O
∈
V
4
ldgenpisys.e
⊢
E
=
⋂
t
∈
L
|
T
⊆
t
5
ldgenpisys.1
⊢
φ
→
T
∈
P
6
ldgenpisyslem1.1
⊢
φ
→
A
∈
E
7
ldgenpisyslem2.1
⊢
φ
→
T
⊆
b
∈
𝒫
O
|
A
∩
b
∈
E
8
1
2
3
4
5
6
ldgenpisyslem1
⊢
φ
→
b
∈
𝒫
O
|
A
∩
b
∈
E
∈
L
9
8
7
jca
⊢
φ
→
b
∈
𝒫
O
|
A
∩
b
∈
E
∈
L
∧
T
⊆
b
∈
𝒫
O
|
A
∩
b
∈
E
10
sseq2
⊢
t
=
b
∈
𝒫
O
|
A
∩
b
∈
E
→
T
⊆
t
↔
T
⊆
b
∈
𝒫
O
|
A
∩
b
∈
E
11
10
elrab
⊢
b
∈
𝒫
O
|
A
∩
b
∈
E
∈
t
∈
L
|
T
⊆
t
↔
b
∈
𝒫
O
|
A
∩
b
∈
E
∈
L
∧
T
⊆
b
∈
𝒫
O
|
A
∩
b
∈
E
12
9
11
sylibr
⊢
φ
→
b
∈
𝒫
O
|
A
∩
b
∈
E
∈
t
∈
L
|
T
⊆
t
13
intss1
⊢
b
∈
𝒫
O
|
A
∩
b
∈
E
∈
t
∈
L
|
T
⊆
t
→
⋂
t
∈
L
|
T
⊆
t
⊆
b
∈
𝒫
O
|
A
∩
b
∈
E
14
12
13
syl
⊢
φ
→
⋂
t
∈
L
|
T
⊆
t
⊆
b
∈
𝒫
O
|
A
∩
b
∈
E
15
4
14
eqsstrid
⊢
φ
→
E
⊆
b
∈
𝒫
O
|
A
∩
b
∈
E