Metamath Proof Explorer


Theorem ldgenpisyslem3

Description: Lemma for ldgenpisys . (Contributed by Thierry Arnoux, 18-Jul-2020)

Ref Expression
Hypotheses dynkin.p P = s 𝒫 𝒫 O | fi s s
dynkin.l L = s 𝒫 𝒫 O | s x s O x s x 𝒫 s x ω Disj y x y x s
dynkin.o φ O V
ldgenpisys.e E = t L | T t
ldgenpisys.1 φ T P
ldgenpisyslem3.1 φ A T
Assertion ldgenpisyslem3 φ E b 𝒫 O | A b E

Proof

Step Hyp Ref Expression
1 dynkin.p P = s 𝒫 𝒫 O | fi s s
2 dynkin.l L = s 𝒫 𝒫 O | s x s O x s x 𝒫 s x ω Disj y x y x s
3 dynkin.o φ O V
4 ldgenpisys.e E = t L | T t
5 ldgenpisys.1 φ T P
6 ldgenpisyslem3.1 φ A T
7 id T t T t
8 7 rgenw t L T t T t
9 ssintrab T t L | T t t L T t T t
10 8 9 mpbir T t L | T t
11 10 4 sseqtrri T E
12 11 6 sselid φ A E
13 1 ispisys T P T 𝒫 𝒫 O fi T T
14 5 13 sylib φ T 𝒫 𝒫 O fi T T
15 14 simpld φ T 𝒫 𝒫 O
16 elpwi T 𝒫 𝒫 O T 𝒫 O
17 15 16 syl φ T 𝒫 O
18 5 adantr φ b T T P
19 6 adantr φ b T A T
20 simpr φ b T b T
21 1 inelpisys T P A T b T A b T
22 18 19 20 21 syl3anc φ b T A b T
23 11 22 sselid φ b T A b E
24 23 ralrimiva φ b T A b E
25 17 24 jca φ T 𝒫 O b T A b E
26 ssrab T b 𝒫 O | A b E T 𝒫 O b T A b E
27 25 26 sylibr φ T b 𝒫 O | A b E
28 1 2 3 4 5 12 27 ldgenpisyslem2 φ E b 𝒫 O | A b E