Metamath Proof Explorer


Theorem sigapildsys

Description: Sigma-algebra are exactly classes which are both lambda and pi-systems. (Contributed by Thierry Arnoux, 13-Jun-2020)

Ref Expression
Hypotheses dynkin.p P = s 𝒫 𝒫 O | fi s s
dynkin.l L = s 𝒫 𝒫 O | s x s O x s x 𝒫 s x ω Disj y x y x s
Assertion sigapildsys sigAlgebra O = P L

Proof

Step Hyp Ref Expression
1 dynkin.p P = s 𝒫 𝒫 O | fi s s
2 dynkin.l L = s 𝒫 𝒫 O | s x s O x s x 𝒫 s x ω Disj y x y x s
3 1 sigapisys sigAlgebra O P
4 2 sigaldsys sigAlgebra O L
5 3 4 ssini sigAlgebra O P L
6 id t P L t P L
7 6 elin1d t P L t P
8 1 ispisys t P t 𝒫 𝒫 O fi t t
9 7 8 sylib t P L t 𝒫 𝒫 O fi t t
10 9 simpld t P L t 𝒫 𝒫 O
11 10 elpwid t P L t 𝒫 O
12 dif0 O = O
13 6 elin2d t P L t L
14 2 isldsys t L t 𝒫 𝒫 O t x t O x t x 𝒫 t x ω Disj y x y x t
15 13 14 sylib t P L t 𝒫 𝒫 O t x t O x t x 𝒫 t x ω Disj y x y x t
16 15 simprd t P L t x t O x t x 𝒫 t x ω Disj y x y x t
17 16 simp2d t P L x t O x t
18 16 simp1d t P L t
19 difeq2 x = O x = O
20 eqidd x = t = t
21 19 20 eleq12d x = O x t O t
22 21 rspcv t x t O x t O t
23 18 22 syl t P L x t O x t O t
24 17 23 mpd t P L O t
25 12 24 eqeltrrid t P L O t
26 unieq x = x =
27 uni0 =
28 26 27 eqtrdi x = x =
29 28 adantl t P L x 𝒫 t x ω x = x =
30 18 ad3antrrr t P L x 𝒫 t x ω x = t
31 29 30 eqeltrd t P L x 𝒫 t x ω x = x t
32 vex x V
33 32 0sdom x x
34 33 biimpri x x
35 34 adantl t P L x 𝒫 t x ω x x
36 simplr t P L x 𝒫 t x ω x x ω
37 nnenom ω
38 37 ensymi ω
39 domentr x ω ω x
40 36 38 39 sylancl t P L x 𝒫 t x ω x x
41 fodomr x x f f : onto x
42 35 40 41 syl2anc t P L x 𝒫 t x ω x f f : onto x
43 fveq2 n = i f n = f i
44 43 iundisj n f n = n f n i 1 ..^ n f i
45 fofn f : onto x f Fn
46 fniunfv f Fn n f n = ran f
47 45 46 syl f : onto x n f n = ran f
48 forn f : onto x ran f = x
49 48 unieqd f : onto x ran f = x
50 47 49 eqtrd f : onto x n f n = x
51 44 50 eqtr3id f : onto x n f n i 1 ..^ n f i = x
52 51 adantl t P L x 𝒫 t x ω x f : onto x n f n i 1 ..^ n f i = x
53 fvex f n V
54 difexg f n V f n i 1 ..^ n f i V
55 53 54 ax-mp f n i 1 ..^ n f i V
56 55 dfiun3 n f n i 1 ..^ n f i = ran n f n i 1 ..^ n f i
57 nfv n t P L x 𝒫 t x ω x f : onto x
58 nfcv _ n y
59 nfmpt1 _ n n f n i 1 ..^ n f i
60 59 nfrn _ n ran n f n i 1 ..^ n f i
61 58 60 nfel n y ran n f n i 1 ..^ n f i
62 57 61 nfan n t P L x 𝒫 t x ω x f : onto x y ran n f n i 1 ..^ n f i
63 simpr t P L x 𝒫 t x ω x f : onto x y ran n f n i 1 ..^ n f i n y = f n i 1 ..^ n f i y = f n i 1 ..^ n f i
64 nfv i t P L x 𝒫 t x ω x f : onto x
65 nfcv _ i y
66 nfcv _ i
67 nfcv _ i f n
68 nfiu1 _ i i 1 ..^ n f i
69 67 68 nfdif _ i f n i 1 ..^ n f i
70 66 69 nfmpt _ i n f n i 1 ..^ n f i
71 70 nfrn _ i ran n f n i 1 ..^ n f i
72 65 71 nfel i y ran n f n i 1 ..^ n f i
73 64 72 nfan i t P L x 𝒫 t x ω x f : onto x y ran n f n i 1 ..^ n f i
74 nfv i n
75 73 74 nfan i t P L x 𝒫 t x ω x f : onto x y ran n f n i 1 ..^ n f i n
76 65 69 nfeq i y = f n i 1 ..^ n f i
77 75 76 nfan i t P L x 𝒫 t x ω x f : onto x y ran n f n i 1 ..^ n f i n y = f n i 1 ..^ n f i
78 6 ad7antr t P L x 𝒫 t x ω x f : onto x y ran n f n i 1 ..^ n f i n y = f n i 1 ..^ n f i t P L
79 simp-4r t P L x 𝒫 t x ω x f : onto x x 𝒫 t
80 79 ad3antrrr t P L x 𝒫 t x ω x f : onto x y ran n f n i 1 ..^ n f i n y = f n i 1 ..^ n f i x 𝒫 t
81 80 elpwid t P L x 𝒫 t x ω x f : onto x y ran n f n i 1 ..^ n f i n y = f n i 1 ..^ n f i x t
82 fof f : onto x f : x
83 82 ad4antlr t P L x 𝒫 t x ω x f : onto x y ran n f n i 1 ..^ n f i n y = f n i 1 ..^ n f i f : x
84 simplr t P L x 𝒫 t x ω x f : onto x y ran n f n i 1 ..^ n f i n y = f n i 1 ..^ n f i n
85 83 84 ffvelrnd t P L x 𝒫 t x ω x f : onto x y ran n f n i 1 ..^ n f i n y = f n i 1 ..^ n f i f n x
86 81 85 sseldd t P L x 𝒫 t x ω x f : onto x y ran n f n i 1 ..^ n f i n y = f n i 1 ..^ n f i f n t
87 fzofi 1 ..^ n Fin
88 87 a1i t P L x 𝒫 t x ω x f : onto x y ran n f n i 1 ..^ n f i n y = f n i 1 ..^ n f i 1 ..^ n Fin
89 81 adantr t P L x 𝒫 t x ω x f : onto x y ran n f n i 1 ..^ n f i n y = f n i 1 ..^ n f i i 1 ..^ n x t
90 83 adantr t P L x 𝒫 t x ω x f : onto x y ran n f n i 1 ..^ n f i n y = f n i 1 ..^ n f i i 1 ..^ n f : x
91 fzossnn 1 ..^ n
92 91 a1i t P L x 𝒫 t x ω x f : onto x y ran n f n i 1 ..^ n f i n y = f n i 1 ..^ n f i 1 ..^ n
93 92 sselda t P L x 𝒫 t x ω x f : onto x y ran n f n i 1 ..^ n f i n y = f n i 1 ..^ n f i i 1 ..^ n i
94 90 93 ffvelrnd t P L x 𝒫 t x ω x f : onto x y ran n f n i 1 ..^ n f i n y = f n i 1 ..^ n f i i 1 ..^ n f i x
95 89 94 sseldd t P L x 𝒫 t x ω x f : onto x y ran n f n i 1 ..^ n f i n y = f n i 1 ..^ n f i i 1 ..^ n f i t
96 1 2 77 78 86 88 95 sigapildsyslem t P L x 𝒫 t x ω x f : onto x y ran n f n i 1 ..^ n f i n y = f n i 1 ..^ n f i f n i 1 ..^ n f i t
97 63 96 eqeltrd t P L x 𝒫 t x ω x f : onto x y ran n f n i 1 ..^ n f i n y = f n i 1 ..^ n f i y t
98 simpr t P L x 𝒫 t x ω x f : onto x y ran n f n i 1 ..^ n f i y ran n f n i 1 ..^ n f i
99 eqid n f n i 1 ..^ n f i = n f n i 1 ..^ n f i
100 99 55 elrnmpti y ran n f n i 1 ..^ n f i n y = f n i 1 ..^ n f i
101 98 100 sylib t P L x 𝒫 t x ω x f : onto x y ran n f n i 1 ..^ n f i n y = f n i 1 ..^ n f i
102 62 97 101 r19.29af t P L x 𝒫 t x ω x f : onto x y ran n f n i 1 ..^ n f i y t
103 102 ex t P L x 𝒫 t x ω x f : onto x y ran n f n i 1 ..^ n f i y t
104 103 ssrdv t P L x 𝒫 t x ω x f : onto x ran n f n i 1 ..^ n f i t
105 nnex V
106 105 mptex n f n i 1 ..^ n f i V
107 106 rnex ran n f n i 1 ..^ n f i V
108 elpwg ran n f n i 1 ..^ n f i V ran n f n i 1 ..^ n f i 𝒫 t ran n f n i 1 ..^ n f i t
109 107 108 ax-mp ran n f n i 1 ..^ n f i 𝒫 t ran n f n i 1 ..^ n f i t
110 104 109 sylibr t P L x 𝒫 t x ω x f : onto x ran n f n i 1 ..^ n f i 𝒫 t
111 16 simp3d t P L x 𝒫 t x ω Disj y x y x t
112 111 ad4antr t P L x 𝒫 t x ω x f : onto x x 𝒫 t x ω Disj y x y x t
113 nnct ω
114 mptct ω n f n i 1 ..^ n f i ω
115 113 114 ax-mp n f n i 1 ..^ n f i ω
116 rnct n f n i 1 ..^ n f i ω ran n f n i 1 ..^ n f i ω
117 115 116 mp1i t P L x 𝒫 t x ω x f : onto x ran n f n i 1 ..^ n f i ω
118 43 iundisj2 Disj n f n i 1 ..^ n f i
119 disjrnmpt Disj n f n i 1 ..^ n f i Disj y ran n f n i 1 ..^ n f i y
120 118 119 mp1i t P L x 𝒫 t x ω x f : onto x Disj y ran n f n i 1 ..^ n f i y
121 breq1 x = ran n f n i 1 ..^ n f i x ω ran n f n i 1 ..^ n f i ω
122 disjeq1 x = ran n f n i 1 ..^ n f i Disj y x y Disj y ran n f n i 1 ..^ n f i y
123 121 122 anbi12d x = ran n f n i 1 ..^ n f i x ω Disj y x y ran n f n i 1 ..^ n f i ω Disj y ran n f n i 1 ..^ n f i y
124 unieq x = ran n f n i 1 ..^ n f i x = ran n f n i 1 ..^ n f i
125 124 eleq1d x = ran n f n i 1 ..^ n f i x t ran n f n i 1 ..^ n f i t
126 123 125 imbi12d x = ran n f n i 1 ..^ n f i x ω Disj y x y x t ran n f n i 1 ..^ n f i ω Disj y ran n f n i 1 ..^ n f i y ran n f n i 1 ..^ n f i t
127 126 rspcv ran n f n i 1 ..^ n f i 𝒫 t x 𝒫 t x ω Disj y x y x t ran n f n i 1 ..^ n f i ω Disj y ran n f n i 1 ..^ n f i y ran n f n i 1 ..^ n f i t
128 127 imp ran n f n i 1 ..^ n f i 𝒫 t x 𝒫 t x ω Disj y x y x t ran n f n i 1 ..^ n f i ω Disj y ran n f n i 1 ..^ n f i y ran n f n i 1 ..^ n f i t
129 128 imp ran n f n i 1 ..^ n f i 𝒫 t x 𝒫 t x ω Disj y x y x t ran n f n i 1 ..^ n f i ω Disj y ran n f n i 1 ..^ n f i y ran n f n i 1 ..^ n f i t
130 110 112 117 120 129 syl22anc t P L x 𝒫 t x ω x f : onto x ran n f n i 1 ..^ n f i t
131 56 130 eqeltrid t P L x 𝒫 t x ω x f : onto x n f n i 1 ..^ n f i t
132 52 131 eqeltrrd t P L x 𝒫 t x ω x f : onto x x t
133 42 132 exlimddv t P L x 𝒫 t x ω x x t
134 31 133 pm2.61dane t P L x 𝒫 t x ω x t
135 134 ex t P L x 𝒫 t x ω x t
136 135 ralrimiva t P L x 𝒫 t x ω x t
137 25 17 136 3jca t P L O t x t O x t x 𝒫 t x ω x t
138 11 137 jca t P L t 𝒫 O O t x t O x t x 𝒫 t x ω x t
139 vex t V
140 issiga t V t sigAlgebra O t 𝒫 O O t x t O x t x 𝒫 t x ω x t
141 139 140 ax-mp t sigAlgebra O t 𝒫 O O t x t O x t x 𝒫 t x ω x t
142 138 141 sylibr t P L t sigAlgebra O
143 142 ssriv P L sigAlgebra O
144 5 143 eqssi sigAlgebra O = P L