| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dynkin.p |
|- P = { s e. ~P ~P O | ( fi ` s ) C_ s } |
| 2 |
|
dynkin.l |
|- L = { s e. ~P ~P O | ( (/) e. s /\ A. x e. s ( O \ x ) e. s /\ A. x e. ~P s ( ( x ~<_ _om /\ Disj_ y e. x y ) -> U. x e. s ) ) } |
| 3 |
|
sigapildsyslem.n |
|- F/ n ph |
| 4 |
|
sigapildsyslem.1 |
|- ( ph -> t e. ( P i^i L ) ) |
| 5 |
|
sigapildsyslem.2 |
|- ( ph -> A e. t ) |
| 6 |
|
sigapildsyslem.3 |
|- ( ph -> N e. Fin ) |
| 7 |
|
sigapildsyslem.4 |
|- ( ( ph /\ n e. N ) -> B e. t ) |
| 8 |
|
iuneq1 |
|- ( N = (/) -> U_ n e. N B = U_ n e. (/) B ) |
| 9 |
|
0iun |
|- U_ n e. (/) B = (/) |
| 10 |
8 9
|
eqtrdi |
|- ( N = (/) -> U_ n e. N B = (/) ) |
| 11 |
10
|
difeq2d |
|- ( N = (/) -> ( A \ U_ n e. N B ) = ( A \ (/) ) ) |
| 12 |
|
dif0 |
|- ( A \ (/) ) = A |
| 13 |
11 12
|
eqtrdi |
|- ( N = (/) -> ( A \ U_ n e. N B ) = A ) |
| 14 |
13
|
adantl |
|- ( ( ph /\ N = (/) ) -> ( A \ U_ n e. N B ) = A ) |
| 15 |
5
|
adantr |
|- ( ( ph /\ N = (/) ) -> A e. t ) |
| 16 |
14 15
|
eqeltrd |
|- ( ( ph /\ N = (/) ) -> ( A \ U_ n e. N B ) e. t ) |
| 17 |
|
iindif2 |
|- ( N =/= (/) -> |^|_ n e. N ( A \ B ) = ( A \ U_ n e. N B ) ) |
| 18 |
17
|
adantl |
|- ( ( ph /\ N =/= (/) ) -> |^|_ n e. N ( A \ B ) = ( A \ U_ n e. N B ) ) |
| 19 |
4
|
adantr |
|- ( ( ph /\ N =/= (/) ) -> t e. ( P i^i L ) ) |
| 20 |
19
|
elin1d |
|- ( ( ph /\ N =/= (/) ) -> t e. P ) |
| 21 |
1
|
ispisys |
|- ( t e. P <-> ( t e. ~P ~P O /\ ( fi ` t ) C_ t ) ) |
| 22 |
20 21
|
sylib |
|- ( ( ph /\ N =/= (/) ) -> ( t e. ~P ~P O /\ ( fi ` t ) C_ t ) ) |
| 23 |
22
|
simprd |
|- ( ( ph /\ N =/= (/) ) -> ( fi ` t ) C_ t ) |
| 24 |
|
nfv |
|- F/ n N =/= (/) |
| 25 |
3 24
|
nfan |
|- F/ n ( ph /\ N =/= (/) ) |
| 26 |
22
|
simpld |
|- ( ( ph /\ N =/= (/) ) -> t e. ~P ~P O ) |
| 27 |
26
|
elpwid |
|- ( ( ph /\ N =/= (/) ) -> t C_ ~P O ) |
| 28 |
5
|
adantr |
|- ( ( ph /\ N =/= (/) ) -> A e. t ) |
| 29 |
27 28
|
sseldd |
|- ( ( ph /\ N =/= (/) ) -> A e. ~P O ) |
| 30 |
29
|
elpwid |
|- ( ( ph /\ N =/= (/) ) -> A C_ O ) |
| 31 |
30
|
adantr |
|- ( ( ( ph /\ N =/= (/) ) /\ n e. N ) -> A C_ O ) |
| 32 |
|
difin2 |
|- ( A C_ O -> ( A \ B ) = ( ( O \ B ) i^i A ) ) |
| 33 |
31 32
|
syl |
|- ( ( ( ph /\ N =/= (/) ) /\ n e. N ) -> ( A \ B ) = ( ( O \ B ) i^i A ) ) |
| 34 |
23
|
adantr |
|- ( ( ( ph /\ N =/= (/) ) /\ n e. N ) -> ( fi ` t ) C_ t ) |
| 35 |
19
|
adantr |
|- ( ( ( ph /\ N =/= (/) ) /\ n e. N ) -> t e. ( P i^i L ) ) |
| 36 |
19
|
elin2d |
|- ( ( ph /\ N =/= (/) ) -> t e. L ) |
| 37 |
2
|
isldsys |
|- ( t e. L <-> ( t e. ~P ~P O /\ ( (/) e. t /\ A. x e. t ( O \ x ) e. t /\ A. x e. ~P t ( ( x ~<_ _om /\ Disj_ y e. x y ) -> U. x e. t ) ) ) ) |
| 38 |
36 37
|
sylib |
|- ( ( ph /\ N =/= (/) ) -> ( t e. ~P ~P O /\ ( (/) e. t /\ A. x e. t ( O \ x ) e. t /\ A. x e. ~P t ( ( x ~<_ _om /\ Disj_ y e. x y ) -> U. x e. t ) ) ) ) |
| 39 |
38
|
simprd |
|- ( ( ph /\ N =/= (/) ) -> ( (/) e. t /\ A. x e. t ( O \ x ) e. t /\ A. x e. ~P t ( ( x ~<_ _om /\ Disj_ y e. x y ) -> U. x e. t ) ) ) |
| 40 |
39
|
simp2d |
|- ( ( ph /\ N =/= (/) ) -> A. x e. t ( O \ x ) e. t ) |
| 41 |
40
|
adantr |
|- ( ( ( ph /\ N =/= (/) ) /\ n e. N ) -> A. x e. t ( O \ x ) e. t ) |
| 42 |
7
|
adantlr |
|- ( ( ( ph /\ N =/= (/) ) /\ n e. N ) -> B e. t ) |
| 43 |
|
nfv |
|- F/ x ( O \ B ) e. t |
| 44 |
|
difeq2 |
|- ( x = B -> ( O \ x ) = ( O \ B ) ) |
| 45 |
44
|
eleq1d |
|- ( x = B -> ( ( O \ x ) e. t <-> ( O \ B ) e. t ) ) |
| 46 |
43 45
|
rspc |
|- ( B e. t -> ( A. x e. t ( O \ x ) e. t -> ( O \ B ) e. t ) ) |
| 47 |
42 46
|
syl |
|- ( ( ( ph /\ N =/= (/) ) /\ n e. N ) -> ( A. x e. t ( O \ x ) e. t -> ( O \ B ) e. t ) ) |
| 48 |
41 47
|
mpd |
|- ( ( ( ph /\ N =/= (/) ) /\ n e. N ) -> ( O \ B ) e. t ) |
| 49 |
28
|
adantr |
|- ( ( ( ph /\ N =/= (/) ) /\ n e. N ) -> A e. t ) |
| 50 |
|
inelfi |
|- ( ( t e. ( P i^i L ) /\ ( O \ B ) e. t /\ A e. t ) -> ( ( O \ B ) i^i A ) e. ( fi ` t ) ) |
| 51 |
35 48 49 50
|
syl3anc |
|- ( ( ( ph /\ N =/= (/) ) /\ n e. N ) -> ( ( O \ B ) i^i A ) e. ( fi ` t ) ) |
| 52 |
34 51
|
sseldd |
|- ( ( ( ph /\ N =/= (/) ) /\ n e. N ) -> ( ( O \ B ) i^i A ) e. t ) |
| 53 |
33 52
|
eqeltrd |
|- ( ( ( ph /\ N =/= (/) ) /\ n e. N ) -> ( A \ B ) e. t ) |
| 54 |
53
|
ex |
|- ( ( ph /\ N =/= (/) ) -> ( n e. N -> ( A \ B ) e. t ) ) |
| 55 |
25 54
|
ralrimi |
|- ( ( ph /\ N =/= (/) ) -> A. n e. N ( A \ B ) e. t ) |
| 56 |
|
simpr |
|- ( ( ph /\ N =/= (/) ) -> N =/= (/) ) |
| 57 |
6
|
adantr |
|- ( ( ph /\ N =/= (/) ) -> N e. Fin ) |
| 58 |
|
vex |
|- t e. _V |
| 59 |
|
iinfi |
|- ( ( t e. _V /\ ( A. n e. N ( A \ B ) e. t /\ N =/= (/) /\ N e. Fin ) ) -> |^|_ n e. N ( A \ B ) e. ( fi ` t ) ) |
| 60 |
58 59
|
mpan |
|- ( ( A. n e. N ( A \ B ) e. t /\ N =/= (/) /\ N e. Fin ) -> |^|_ n e. N ( A \ B ) e. ( fi ` t ) ) |
| 61 |
55 56 57 60
|
syl3anc |
|- ( ( ph /\ N =/= (/) ) -> |^|_ n e. N ( A \ B ) e. ( fi ` t ) ) |
| 62 |
23 61
|
sseldd |
|- ( ( ph /\ N =/= (/) ) -> |^|_ n e. N ( A \ B ) e. t ) |
| 63 |
18 62
|
eqeltrrd |
|- ( ( ph /\ N =/= (/) ) -> ( A \ U_ n e. N B ) e. t ) |
| 64 |
16 63
|
pm2.61dane |
|- ( ph -> ( A \ U_ n e. N B ) e. t ) |