| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dynkin.p |  |-  P = { s e. ~P ~P O | ( fi ` s ) C_ s } | 
						
							| 2 |  | dynkin.l |  |-  L = { s e. ~P ~P O | ( (/) e. s /\ A. x e. s ( O \ x ) e. s /\ A. x e. ~P s ( ( x ~<_ _om /\ Disj_ y e. x y ) -> U. x e. s ) ) } | 
						
							| 3 |  | sigapildsyslem.n |  |-  F/ n ph | 
						
							| 4 |  | sigapildsyslem.1 |  |-  ( ph -> t e. ( P i^i L ) ) | 
						
							| 5 |  | sigapildsyslem.2 |  |-  ( ph -> A e. t ) | 
						
							| 6 |  | sigapildsyslem.3 |  |-  ( ph -> N e. Fin ) | 
						
							| 7 |  | sigapildsyslem.4 |  |-  ( ( ph /\ n e. N ) -> B e. t ) | 
						
							| 8 |  | iuneq1 |  |-  ( N = (/) -> U_ n e. N B = U_ n e. (/) B ) | 
						
							| 9 |  | 0iun |  |-  U_ n e. (/) B = (/) | 
						
							| 10 | 8 9 | eqtrdi |  |-  ( N = (/) -> U_ n e. N B = (/) ) | 
						
							| 11 | 10 | difeq2d |  |-  ( N = (/) -> ( A \ U_ n e. N B ) = ( A \ (/) ) ) | 
						
							| 12 |  | dif0 |  |-  ( A \ (/) ) = A | 
						
							| 13 | 11 12 | eqtrdi |  |-  ( N = (/) -> ( A \ U_ n e. N B ) = A ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ph /\ N = (/) ) -> ( A \ U_ n e. N B ) = A ) | 
						
							| 15 | 5 | adantr |  |-  ( ( ph /\ N = (/) ) -> A e. t ) | 
						
							| 16 | 14 15 | eqeltrd |  |-  ( ( ph /\ N = (/) ) -> ( A \ U_ n e. N B ) e. t ) | 
						
							| 17 |  | iindif2 |  |-  ( N =/= (/) -> |^|_ n e. N ( A \ B ) = ( A \ U_ n e. N B ) ) | 
						
							| 18 | 17 | adantl |  |-  ( ( ph /\ N =/= (/) ) -> |^|_ n e. N ( A \ B ) = ( A \ U_ n e. N B ) ) | 
						
							| 19 | 4 | adantr |  |-  ( ( ph /\ N =/= (/) ) -> t e. ( P i^i L ) ) | 
						
							| 20 | 19 | elin1d |  |-  ( ( ph /\ N =/= (/) ) -> t e. P ) | 
						
							| 21 | 1 | ispisys |  |-  ( t e. P <-> ( t e. ~P ~P O /\ ( fi ` t ) C_ t ) ) | 
						
							| 22 | 20 21 | sylib |  |-  ( ( ph /\ N =/= (/) ) -> ( t e. ~P ~P O /\ ( fi ` t ) C_ t ) ) | 
						
							| 23 | 22 | simprd |  |-  ( ( ph /\ N =/= (/) ) -> ( fi ` t ) C_ t ) | 
						
							| 24 |  | nfv |  |-  F/ n N =/= (/) | 
						
							| 25 | 3 24 | nfan |  |-  F/ n ( ph /\ N =/= (/) ) | 
						
							| 26 | 22 | simpld |  |-  ( ( ph /\ N =/= (/) ) -> t e. ~P ~P O ) | 
						
							| 27 | 26 | elpwid |  |-  ( ( ph /\ N =/= (/) ) -> t C_ ~P O ) | 
						
							| 28 | 5 | adantr |  |-  ( ( ph /\ N =/= (/) ) -> A e. t ) | 
						
							| 29 | 27 28 | sseldd |  |-  ( ( ph /\ N =/= (/) ) -> A e. ~P O ) | 
						
							| 30 | 29 | elpwid |  |-  ( ( ph /\ N =/= (/) ) -> A C_ O ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ( ph /\ N =/= (/) ) /\ n e. N ) -> A C_ O ) | 
						
							| 32 |  | difin2 |  |-  ( A C_ O -> ( A \ B ) = ( ( O \ B ) i^i A ) ) | 
						
							| 33 | 31 32 | syl |  |-  ( ( ( ph /\ N =/= (/) ) /\ n e. N ) -> ( A \ B ) = ( ( O \ B ) i^i A ) ) | 
						
							| 34 | 23 | adantr |  |-  ( ( ( ph /\ N =/= (/) ) /\ n e. N ) -> ( fi ` t ) C_ t ) | 
						
							| 35 | 19 | adantr |  |-  ( ( ( ph /\ N =/= (/) ) /\ n e. N ) -> t e. ( P i^i L ) ) | 
						
							| 36 | 19 | elin2d |  |-  ( ( ph /\ N =/= (/) ) -> t e. L ) | 
						
							| 37 | 2 | isldsys |  |-  ( t e. L <-> ( t e. ~P ~P O /\ ( (/) e. t /\ A. x e. t ( O \ x ) e. t /\ A. x e. ~P t ( ( x ~<_ _om /\ Disj_ y e. x y ) -> U. x e. t ) ) ) ) | 
						
							| 38 | 36 37 | sylib |  |-  ( ( ph /\ N =/= (/) ) -> ( t e. ~P ~P O /\ ( (/) e. t /\ A. x e. t ( O \ x ) e. t /\ A. x e. ~P t ( ( x ~<_ _om /\ Disj_ y e. x y ) -> U. x e. t ) ) ) ) | 
						
							| 39 | 38 | simprd |  |-  ( ( ph /\ N =/= (/) ) -> ( (/) e. t /\ A. x e. t ( O \ x ) e. t /\ A. x e. ~P t ( ( x ~<_ _om /\ Disj_ y e. x y ) -> U. x e. t ) ) ) | 
						
							| 40 | 39 | simp2d |  |-  ( ( ph /\ N =/= (/) ) -> A. x e. t ( O \ x ) e. t ) | 
						
							| 41 | 40 | adantr |  |-  ( ( ( ph /\ N =/= (/) ) /\ n e. N ) -> A. x e. t ( O \ x ) e. t ) | 
						
							| 42 | 7 | adantlr |  |-  ( ( ( ph /\ N =/= (/) ) /\ n e. N ) -> B e. t ) | 
						
							| 43 |  | nfv |  |-  F/ x ( O \ B ) e. t | 
						
							| 44 |  | difeq2 |  |-  ( x = B -> ( O \ x ) = ( O \ B ) ) | 
						
							| 45 | 44 | eleq1d |  |-  ( x = B -> ( ( O \ x ) e. t <-> ( O \ B ) e. t ) ) | 
						
							| 46 | 43 45 | rspc |  |-  ( B e. t -> ( A. x e. t ( O \ x ) e. t -> ( O \ B ) e. t ) ) | 
						
							| 47 | 42 46 | syl |  |-  ( ( ( ph /\ N =/= (/) ) /\ n e. N ) -> ( A. x e. t ( O \ x ) e. t -> ( O \ B ) e. t ) ) | 
						
							| 48 | 41 47 | mpd |  |-  ( ( ( ph /\ N =/= (/) ) /\ n e. N ) -> ( O \ B ) e. t ) | 
						
							| 49 | 28 | adantr |  |-  ( ( ( ph /\ N =/= (/) ) /\ n e. N ) -> A e. t ) | 
						
							| 50 |  | inelfi |  |-  ( ( t e. ( P i^i L ) /\ ( O \ B ) e. t /\ A e. t ) -> ( ( O \ B ) i^i A ) e. ( fi ` t ) ) | 
						
							| 51 | 35 48 49 50 | syl3anc |  |-  ( ( ( ph /\ N =/= (/) ) /\ n e. N ) -> ( ( O \ B ) i^i A ) e. ( fi ` t ) ) | 
						
							| 52 | 34 51 | sseldd |  |-  ( ( ( ph /\ N =/= (/) ) /\ n e. N ) -> ( ( O \ B ) i^i A ) e. t ) | 
						
							| 53 | 33 52 | eqeltrd |  |-  ( ( ( ph /\ N =/= (/) ) /\ n e. N ) -> ( A \ B ) e. t ) | 
						
							| 54 | 53 | ex |  |-  ( ( ph /\ N =/= (/) ) -> ( n e. N -> ( A \ B ) e. t ) ) | 
						
							| 55 | 25 54 | ralrimi |  |-  ( ( ph /\ N =/= (/) ) -> A. n e. N ( A \ B ) e. t ) | 
						
							| 56 |  | simpr |  |-  ( ( ph /\ N =/= (/) ) -> N =/= (/) ) | 
						
							| 57 | 6 | adantr |  |-  ( ( ph /\ N =/= (/) ) -> N e. Fin ) | 
						
							| 58 |  | vex |  |-  t e. _V | 
						
							| 59 |  | iinfi |  |-  ( ( t e. _V /\ ( A. n e. N ( A \ B ) e. t /\ N =/= (/) /\ N e. Fin ) ) -> |^|_ n e. N ( A \ B ) e. ( fi ` t ) ) | 
						
							| 60 | 58 59 | mpan |  |-  ( ( A. n e. N ( A \ B ) e. t /\ N =/= (/) /\ N e. Fin ) -> |^|_ n e. N ( A \ B ) e. ( fi ` t ) ) | 
						
							| 61 | 55 56 57 60 | syl3anc |  |-  ( ( ph /\ N =/= (/) ) -> |^|_ n e. N ( A \ B ) e. ( fi ` t ) ) | 
						
							| 62 | 23 61 | sseldd |  |-  ( ( ph /\ N =/= (/) ) -> |^|_ n e. N ( A \ B ) e. t ) | 
						
							| 63 | 18 62 | eqeltrrd |  |-  ( ( ph /\ N =/= (/) ) -> ( A \ U_ n e. N B ) e. t ) | 
						
							| 64 | 16 63 | pm2.61dane |  |-  ( ph -> ( A \ U_ n e. N B ) e. t ) |