Step |
Hyp |
Ref |
Expression |
1 |
|
lpfval.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
1
|
lpval |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) = { 𝑥 ∣ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) } ) |
3 |
2
|
eleq2d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ 𝑃 ∈ { 𝑥 ∣ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) } ) ) |
4 |
|
id |
⊢ ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) → 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) ) |
5 |
|
id |
⊢ ( 𝑥 = 𝑃 → 𝑥 = 𝑃 ) |
6 |
|
sneq |
⊢ ( 𝑥 = 𝑃 → { 𝑥 } = { 𝑃 } ) |
7 |
6
|
difeq2d |
⊢ ( 𝑥 = 𝑃 → ( 𝑆 ∖ { 𝑥 } ) = ( 𝑆 ∖ { 𝑃 } ) ) |
8 |
7
|
fveq2d |
⊢ ( 𝑥 = 𝑃 → ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) = ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) ) |
9 |
5 8
|
eleq12d |
⊢ ( 𝑥 = 𝑃 → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ↔ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) ) ) |
10 |
4 9
|
elab3 |
⊢ ( 𝑃 ∈ { 𝑥 ∣ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) } ↔ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) ) |
11 |
3 10
|
bitrdi |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( limPt ‘ 𝐽 ) ‘ 𝑆 ) ↔ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑆 ∖ { 𝑃 } ) ) ) ) |