Metamath Proof Explorer


Theorem islvol2

Description: The predicate "is a 3-dim lattice volume" in terms of atoms. (Contributed by NM, 1-Jul-2012)

Ref Expression
Hypotheses islvol5.b 𝐵 = ( Base ‘ 𝐾 )
islvol5.l = ( le ‘ 𝐾 )
islvol5.j = ( join ‘ 𝐾 )
islvol5.a 𝐴 = ( Atoms ‘ 𝐾 )
islvol5.v 𝑉 = ( LVols ‘ 𝐾 )
Assertion islvol2 ( 𝐾 ∈ HL → ( 𝑋𝑉 ↔ ( 𝑋𝐵 ∧ ∃ 𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ ¬ 𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ) ∧ 𝑋 = ( ( ( 𝑝 𝑞 ) 𝑟 ) 𝑠 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 islvol5.b 𝐵 = ( Base ‘ 𝐾 )
2 islvol5.l = ( le ‘ 𝐾 )
3 islvol5.j = ( join ‘ 𝐾 )
4 islvol5.a 𝐴 = ( Atoms ‘ 𝐾 )
5 islvol5.v 𝑉 = ( LVols ‘ 𝐾 )
6 1 5 lvolbase ( 𝑋𝑉𝑋𝐵 )
7 6 pm4.71ri ( 𝑋𝑉 ↔ ( 𝑋𝐵𝑋𝑉 ) )
8 1 2 3 4 5 islvol5 ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( 𝑋𝑉 ↔ ∃ 𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ ¬ 𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ) ∧ 𝑋 = ( ( ( 𝑝 𝑞 ) 𝑟 ) 𝑠 ) ) ) )
9 8 pm5.32da ( 𝐾 ∈ HL → ( ( 𝑋𝐵𝑋𝑉 ) ↔ ( 𝑋𝐵 ∧ ∃ 𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ ¬ 𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ) ∧ 𝑋 = ( ( ( 𝑝 𝑞 ) 𝑟 ) 𝑠 ) ) ) ) )
10 7 9 syl5bb ( 𝐾 ∈ HL → ( 𝑋𝑉 ↔ ( 𝑋𝐵 ∧ ∃ 𝑝𝐴𝑞𝐴𝑟𝐴𝑠𝐴 ( ( 𝑝𝑞 ∧ ¬ 𝑟 ( 𝑝 𝑞 ) ∧ ¬ 𝑠 ( ( 𝑝 𝑞 ) 𝑟 ) ) ∧ 𝑋 = ( ( ( 𝑝 𝑞 ) 𝑟 ) 𝑠 ) ) ) ) )