Metamath Proof Explorer


Theorem islvol2

Description: The predicate "is a 3-dim lattice volume" in terms of atoms. (Contributed by NM, 1-Jul-2012)

Ref Expression
Hypotheses islvol5.b B=BaseK
islvol5.l ˙=K
islvol5.j ˙=joinK
islvol5.a A=AtomsK
islvol5.v V=LVolsK
Assertion islvol2 KHLXVXBpAqArAsApq¬r˙p˙q¬s˙p˙q˙rX=p˙q˙r˙s

Proof

Step Hyp Ref Expression
1 islvol5.b B=BaseK
2 islvol5.l ˙=K
3 islvol5.j ˙=joinK
4 islvol5.a A=AtomsK
5 islvol5.v V=LVolsK
6 1 5 lvolbase XVXB
7 6 pm4.71ri XVXBXV
8 1 2 3 4 5 islvol5 KHLXBXVpAqArAsApq¬r˙p˙q¬s˙p˙q˙rX=p˙q˙r˙s
9 8 pm5.32da KHLXBXVXBpAqArAsApq¬r˙p˙q¬s˙p˙q˙rX=p˙q˙r˙s
10 7 9 bitrid KHLXVXBpAqArAsApq¬r˙p˙q¬s˙p˙q˙rX=p˙q˙r˙s