Step |
Hyp |
Ref |
Expression |
1 |
|
islvol5.b |
|
2 |
|
islvol5.l |
|
3 |
|
islvol5.j |
|
4 |
|
islvol5.a |
|
5 |
|
islvol5.v |
|
6 |
|
eqid |
|
7 |
1 2 3 4 6 5
|
islvol3 |
|
8 |
|
df-rex |
|
9 |
|
r19.41v |
|
10 |
|
df-3an |
|
11 |
10
|
anbi2i |
|
12 |
|
an13 |
|
13 |
11 12
|
bitri |
|
14 |
9 13
|
bitri |
|
15 |
14
|
exbii |
|
16 |
|
ovex |
|
17 |
|
an12 |
|
18 |
|
eleq1 |
|
19 |
|
breq2 |
|
20 |
19
|
notbid |
|
21 |
|
oveq1 |
|
22 |
21
|
eqeq2d |
|
23 |
20 22
|
anbi12d |
|
24 |
23
|
anbi2d |
|
25 |
|
anass |
|
26 |
|
df-3an |
|
27 |
26
|
bicomi |
|
28 |
27
|
anbi1i |
|
29 |
25 28
|
bitr3i |
|
30 |
24 29
|
bitrdi |
|
31 |
18 30
|
anbi12d |
|
32 |
17 31
|
syl5bb |
|
33 |
32
|
rexbidv |
|
34 |
|
r19.42v |
|
35 |
|
r19.42v |
|
36 |
33 34 35
|
3bitr3g |
|
37 |
16 36
|
ceqsexv |
|
38 |
15 37
|
bitri |
|
39 |
|
hllat |
|
40 |
39
|
ad3antrrr |
|
41 |
|
simplll |
|
42 |
|
simplrl |
|
43 |
|
simplrr |
|
44 |
1 3 4
|
hlatjcl |
|
45 |
41 42 43 44
|
syl3anc |
|
46 |
1 4
|
atbase |
|
47 |
46
|
adantl |
|
48 |
1 3
|
latjcl |
|
49 |
40 45 47 48
|
syl3anc |
|
50 |
49
|
biantrurd |
|
51 |
38 50
|
bitr4id |
|
52 |
51
|
rexbidva |
|
53 |
52
|
2rexbidva |
|
54 |
|
rexcom4 |
|
55 |
54
|
rexbii |
|
56 |
|
rexcom4 |
|
57 |
55 56
|
bitri |
|
58 |
57
|
rexbii |
|
59 |
|
rexcom4 |
|
60 |
58 59
|
bitri |
|
61 |
53 60
|
bitr3di |
|
62 |
|
rexcom |
|
63 |
62
|
rexbii |
|
64 |
|
rexcom |
|
65 |
63 64
|
bitri |
|
66 |
65
|
rexbii |
|
67 |
|
rexcom |
|
68 |
66 67
|
bitri |
|
69 |
1 2 3 4 6
|
islpln2 |
|
70 |
69
|
adantr |
|
71 |
70
|
anbi1d |
|
72 |
|
r19.42v |
|
73 |
|
r19.42v |
|
74 |
73
|
rexbii |
|
75 |
|
r19.42v |
|
76 |
74 75
|
bitri |
|
77 |
76
|
rexbii |
|
78 |
|
an32 |
|
79 |
72 77 78
|
3bitr4ri |
|
80 |
71 79
|
bitrdi |
|
81 |
80
|
rexbidv |
|
82 |
68 81
|
bitr4id |
|
83 |
|
r19.42v |
|
84 |
82 83
|
bitrdi |
|
85 |
84
|
exbidv |
|
86 |
61 85
|
bitrd |
|
87 |
8 86
|
bitr4id |
|
88 |
7 87
|
bitrd |
|