Metamath Proof Explorer


Theorem islvol3

Description: The predicate "is a 3-dim lattice volume". (Contributed by NM, 1-Jul-2012)

Ref Expression
Hypotheses islvol3.b B=BaseK
islvol3.l ˙=K
islvol3.j ˙=joinK
islvol3.a A=AtomsK
islvol3.p P=LPlanesK
islvol3.v V=LVolsK
Assertion islvol3 KHLXBXVyPpA¬p˙yX=y˙p

Proof

Step Hyp Ref Expression
1 islvol3.b B=BaseK
2 islvol3.l ˙=K
3 islvol3.j ˙=joinK
4 islvol3.a A=AtomsK
5 islvol3.p P=LPlanesK
6 islvol3.v V=LVolsK
7 eqid K=K
8 1 7 5 6 islvol4 KHLXBXVyPyKX
9 simpll KHLXByPKHL
10 1 5 lplnbase yPyB
11 10 adantl KHLXByPyB
12 simplr KHLXByPXB
13 1 2 3 7 4 cvrval3 KHLyBXByKXpA¬p˙yy˙p=X
14 9 11 12 13 syl3anc KHLXByPyKXpA¬p˙yy˙p=X
15 eqcom y˙p=XX=y˙p
16 15 a1i KHLXByPpAy˙p=XX=y˙p
17 16 anbi2d KHLXByPpA¬p˙yy˙p=X¬p˙yX=y˙p
18 17 rexbidva KHLXByPpA¬p˙yy˙p=XpA¬p˙yX=y˙p
19 14 18 bitrd KHLXByPyKXpA¬p˙yX=y˙p
20 19 rexbidva KHLXByPyKXyPpA¬p˙yX=y˙p
21 8 20 bitrd KHLXBXVyPpA¬p˙yX=y˙p