Metamath Proof Explorer


Theorem islpln2

Description: The predicate "is a lattice plane" in terms of atoms. (Contributed by NM, 25-Jun-2012)

Ref Expression
Hypotheses islpln5.b B=BaseK
islpln5.l ˙=K
islpln5.j ˙=joinK
islpln5.a A=AtomsK
islpln5.p P=LPlanesK
Assertion islpln2 KHLXPXBpAqArApq¬r˙p˙qX=p˙q˙r

Proof

Step Hyp Ref Expression
1 islpln5.b B=BaseK
2 islpln5.l ˙=K
3 islpln5.j ˙=joinK
4 islpln5.a A=AtomsK
5 islpln5.p P=LPlanesK
6 1 5 lplnbase XPXB
7 6 pm4.71ri XPXBXP
8 1 2 3 4 5 islpln5 KHLXBXPpAqArApq¬r˙p˙qX=p˙q˙r
9 8 pm5.32da KHLXBXPXBpAqArApq¬r˙p˙qX=p˙q˙r
10 7 9 bitrid KHLXPXBpAqArApq¬r˙p˙qX=p˙q˙r