Metamath Proof Explorer


Theorem islpln2

Description: The predicate "is a lattice plane" in terms of atoms. (Contributed by NM, 25-Jun-2012)

Ref Expression
Hypotheses islpln5.b
|- B = ( Base ` K )
islpln5.l
|- .<_ = ( le ` K )
islpln5.j
|- .\/ = ( join ` K )
islpln5.a
|- A = ( Atoms ` K )
islpln5.p
|- P = ( LPlanes ` K )
Assertion islpln2
|- ( K e. HL -> ( X e. P <-> ( X e. B /\ E. p e. A E. q e. A E. r e. A ( p =/= q /\ -. r .<_ ( p .\/ q ) /\ X = ( ( p .\/ q ) .\/ r ) ) ) ) )

Proof

Step Hyp Ref Expression
1 islpln5.b
 |-  B = ( Base ` K )
2 islpln5.l
 |-  .<_ = ( le ` K )
3 islpln5.j
 |-  .\/ = ( join ` K )
4 islpln5.a
 |-  A = ( Atoms ` K )
5 islpln5.p
 |-  P = ( LPlanes ` K )
6 1 5 lplnbase
 |-  ( X e. P -> X e. B )
7 6 pm4.71ri
 |-  ( X e. P <-> ( X e. B /\ X e. P ) )
8 1 2 3 4 5 islpln5
 |-  ( ( K e. HL /\ X e. B ) -> ( X e. P <-> E. p e. A E. q e. A E. r e. A ( p =/= q /\ -. r .<_ ( p .\/ q ) /\ X = ( ( p .\/ q ) .\/ r ) ) ) )
9 8 pm5.32da
 |-  ( K e. HL -> ( ( X e. B /\ X e. P ) <-> ( X e. B /\ E. p e. A E. q e. A E. r e. A ( p =/= q /\ -. r .<_ ( p .\/ q ) /\ X = ( ( p .\/ q ) .\/ r ) ) ) ) )
10 7 9 syl5bb
 |-  ( K e. HL -> ( X e. P <-> ( X e. B /\ E. p e. A E. q e. A E. r e. A ( p =/= q /\ -. r .<_ ( p .\/ q ) /\ X = ( ( p .\/ q ) .\/ r ) ) ) ) )