| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismndo.1 |
⊢ 𝑋 = dom dom 𝐺 |
| 2 |
|
df-mndo |
⊢ MndOp = ( SemiGrp ∩ ExId ) |
| 3 |
2
|
eleq2i |
⊢ ( 𝐺 ∈ MndOp ↔ 𝐺 ∈ ( SemiGrp ∩ ExId ) ) |
| 4 |
|
elin |
⊢ ( 𝐺 ∈ ( SemiGrp ∩ ExId ) ↔ ( 𝐺 ∈ SemiGrp ∧ 𝐺 ∈ ExId ) ) |
| 5 |
1
|
isexid |
⊢ ( 𝐺 ∈ 𝐴 → ( 𝐺 ∈ ExId ↔ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) |
| 6 |
5
|
anbi2d |
⊢ ( 𝐺 ∈ 𝐴 → ( ( 𝐺 ∈ SemiGrp ∧ 𝐺 ∈ ExId ) ↔ ( 𝐺 ∈ SemiGrp ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) ) |
| 7 |
4 6
|
bitrid |
⊢ ( 𝐺 ∈ 𝐴 → ( 𝐺 ∈ ( SemiGrp ∩ ExId ) ↔ ( 𝐺 ∈ SemiGrp ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) ) |
| 8 |
3 7
|
bitrid |
⊢ ( 𝐺 ∈ 𝐴 → ( 𝐺 ∈ MndOp ↔ ( 𝐺 ∈ SemiGrp ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) ) |