Metamath Proof Explorer


Theorem isnrm

Description: The predicate "is a normal space." Much like the case for regular spaces, normal does not imply Hausdorff or even regular. (Contributed by Jeff Hankins, 1-Feb-2010) (Revised by Mario Carneiro, 24-Aug-2015)

Ref Expression
Assertion isnrm ( 𝐽 ∈ Nrm ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥𝐽𝑦 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑥 ) ∃ 𝑧𝐽 ( 𝑦𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝑗 = 𝐽 → ( Clsd ‘ 𝑗 ) = ( Clsd ‘ 𝐽 ) )
2 1 ineq1d ( 𝑗 = 𝐽 → ( ( Clsd ‘ 𝑗 ) ∩ 𝒫 𝑥 ) = ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑥 ) )
3 fveq2 ( 𝑗 = 𝐽 → ( cls ‘ 𝑗 ) = ( cls ‘ 𝐽 ) )
4 3 fveq1d ( 𝑗 = 𝐽 → ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) = ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) )
5 4 sseq1d ( 𝑗 = 𝐽 → ( ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑥 ) )
6 5 anbi2d ( 𝑗 = 𝐽 → ( ( 𝑦𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) ↔ ( 𝑦𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑥 ) ) )
7 6 rexeqbi1dv ( 𝑗 = 𝐽 → ( ∃ 𝑧𝑗 ( 𝑦𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) ↔ ∃ 𝑧𝐽 ( 𝑦𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑥 ) ) )
8 2 7 raleqbidv ( 𝑗 = 𝐽 → ( ∀ 𝑦 ∈ ( ( Clsd ‘ 𝑗 ) ∩ 𝒫 𝑥 ) ∃ 𝑧𝑗 ( 𝑦𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) ↔ ∀ 𝑦 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑥 ) ∃ 𝑧𝐽 ( 𝑦𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑥 ) ) )
9 8 raleqbi1dv ( 𝑗 = 𝐽 → ( ∀ 𝑥𝑗𝑦 ∈ ( ( Clsd ‘ 𝑗 ) ∩ 𝒫 𝑥 ) ∃ 𝑧𝑗 ( 𝑦𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) ↔ ∀ 𝑥𝐽𝑦 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑥 ) ∃ 𝑧𝐽 ( 𝑦𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑥 ) ) )
10 df-nrm Nrm = { 𝑗 ∈ Top ∣ ∀ 𝑥𝑗𝑦 ∈ ( ( Clsd ‘ 𝑗 ) ∩ 𝒫 𝑥 ) ∃ 𝑧𝑗 ( 𝑦𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) }
11 9 10 elrab2 ( 𝐽 ∈ Nrm ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥𝐽𝑦 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑥 ) ∃ 𝑧𝐽 ( 𝑦𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑥 ) ) )