Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝑗 = 𝐽 → ( Clsd ‘ 𝑗 ) = ( Clsd ‘ 𝐽 ) ) |
2 |
1
|
ineq1d |
⊢ ( 𝑗 = 𝐽 → ( ( Clsd ‘ 𝑗 ) ∩ 𝒫 𝑥 ) = ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑥 ) ) |
3 |
|
fveq2 |
⊢ ( 𝑗 = 𝐽 → ( cls ‘ 𝑗 ) = ( cls ‘ 𝐽 ) ) |
4 |
3
|
fveq1d |
⊢ ( 𝑗 = 𝐽 → ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) = ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) |
5 |
4
|
sseq1d |
⊢ ( 𝑗 = 𝐽 → ( ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑥 ) ) |
6 |
5
|
anbi2d |
⊢ ( 𝑗 = 𝐽 → ( ( 𝑦 ⊆ 𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) ↔ ( 𝑦 ⊆ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑥 ) ) ) |
7 |
6
|
rexeqbi1dv |
⊢ ( 𝑗 = 𝐽 → ( ∃ 𝑧 ∈ 𝑗 ( 𝑦 ⊆ 𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) ↔ ∃ 𝑧 ∈ 𝐽 ( 𝑦 ⊆ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑥 ) ) ) |
8 |
2 7
|
raleqbidv |
⊢ ( 𝑗 = 𝐽 → ( ∀ 𝑦 ∈ ( ( Clsd ‘ 𝑗 ) ∩ 𝒫 𝑥 ) ∃ 𝑧 ∈ 𝑗 ( 𝑦 ⊆ 𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) ↔ ∀ 𝑦 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑥 ) ∃ 𝑧 ∈ 𝐽 ( 𝑦 ⊆ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑥 ) ) ) |
9 |
8
|
raleqbi1dv |
⊢ ( 𝑗 = 𝐽 → ( ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ ( ( Clsd ‘ 𝑗 ) ∩ 𝒫 𝑥 ) ∃ 𝑧 ∈ 𝑗 ( 𝑦 ⊆ 𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑥 ) ∃ 𝑧 ∈ 𝐽 ( 𝑦 ⊆ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑥 ) ) ) |
10 |
|
df-nrm |
⊢ Nrm = { 𝑗 ∈ Top ∣ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ ( ( Clsd ‘ 𝑗 ) ∩ 𝒫 𝑥 ) ∃ 𝑧 ∈ 𝑗 ( 𝑦 ⊆ 𝑧 ∧ ( ( cls ‘ 𝑗 ) ‘ 𝑧 ) ⊆ 𝑥 ) } |
11 |
9 10
|
elrab2 |
⊢ ( 𝐽 ∈ Nrm ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ ( ( Clsd ‘ 𝐽 ) ∩ 𝒫 𝑥 ) ∃ 𝑧 ∈ 𝐽 ( 𝑦 ⊆ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑥 ) ) ) |