| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isthinc.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 2 |
|
isthinc.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
| 3 |
1 2
|
isthinc |
⊢ ( 𝐶 ∈ ThinCat ↔ ( 𝐶 ∈ Cat ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) ) |
| 4 |
|
moel |
⊢ ( ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) 𝑓 = 𝑔 ) |
| 5 |
4
|
2ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) 𝑓 = 𝑔 ) |
| 6 |
5
|
anbi2i |
⊢ ( ( 𝐶 ∈ Cat ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) ↔ ( 𝐶 ∈ Cat ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) 𝑓 = 𝑔 ) ) |
| 7 |
3 6
|
bitri |
⊢ ( 𝐶 ∈ ThinCat ↔ ( 𝐶 ∈ Cat ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑥 𝐻 𝑦 ) 𝑓 = 𝑔 ) ) |