Description: Express the predicate " J is a topology" using nonempty finite intersections instead of binary intersections as in istopg . (Contributed by NM, 19-Jul-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | istop2g | ⊢ ( 𝐽 ∈ 𝐴 → ( 𝐽 ∈ Top ↔ ( ∀ 𝑥 ( 𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽 ) ∧ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐽 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝐽 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istopg | ⊢ ( 𝐽 ∈ 𝐴 → ( 𝐽 ∈ Top ↔ ( ∀ 𝑥 ( 𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽 ) ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∩ 𝑦 ) ∈ 𝐽 ) ) ) | |
2 | fiint | ⊢ ( ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∩ 𝑦 ) ∈ 𝐽 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐽 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝐽 ) ) | |
3 | 2 | anbi2i | ⊢ ( ( ∀ 𝑥 ( 𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽 ) ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝐽 ( 𝑥 ∩ 𝑦 ) ∈ 𝐽 ) ↔ ( ∀ 𝑥 ( 𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽 ) ∧ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐽 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝐽 ) ) ) |
4 | 1 3 | bitrdi | ⊢ ( 𝐽 ∈ 𝐴 → ( 𝐽 ∈ Top ↔ ( ∀ 𝑥 ( 𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽 ) ∧ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐽 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝐽 ) ) ) ) |