Step |
Hyp |
Ref |
Expression |
1 |
|
isfi |
⊢ ( 𝑥 ∈ Fin ↔ ∃ 𝑦 ∈ ω 𝑥 ≈ 𝑦 ) |
2 |
|
ensym |
⊢ ( 𝑥 ≈ 𝑦 → 𝑦 ≈ 𝑥 ) |
3 |
|
breq1 |
⊢ ( 𝑦 = ∅ → ( 𝑦 ≈ 𝑥 ↔ ∅ ≈ 𝑥 ) ) |
4 |
3
|
anbi2d |
⊢ ( 𝑦 = ∅ → ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑦 ≈ 𝑥 ) ↔ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ ∅ ≈ 𝑥 ) ) ) |
5 |
4
|
imbi1d |
⊢ ( 𝑦 = ∅ → ( ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑦 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ↔ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ ∅ ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ) ) |
6 |
5
|
albidv |
⊢ ( 𝑦 = ∅ → ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑦 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ↔ ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ ∅ ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ) ) |
7 |
|
breq1 |
⊢ ( 𝑦 = 𝑣 → ( 𝑦 ≈ 𝑥 ↔ 𝑣 ≈ 𝑥 ) ) |
8 |
7
|
anbi2d |
⊢ ( 𝑦 = 𝑣 → ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑦 ≈ 𝑥 ) ↔ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) ) ) |
9 |
8
|
imbi1d |
⊢ ( 𝑦 = 𝑣 → ( ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑦 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ↔ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ) ) |
10 |
9
|
albidv |
⊢ ( 𝑦 = 𝑣 → ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑦 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ↔ ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ) ) |
11 |
|
breq1 |
⊢ ( 𝑦 = suc 𝑣 → ( 𝑦 ≈ 𝑥 ↔ suc 𝑣 ≈ 𝑥 ) ) |
12 |
11
|
anbi2d |
⊢ ( 𝑦 = suc 𝑣 → ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑦 ≈ 𝑥 ) ↔ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ suc 𝑣 ≈ 𝑥 ) ) ) |
13 |
12
|
imbi1d |
⊢ ( 𝑦 = suc 𝑣 → ( ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑦 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ↔ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ suc 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ) ) |
14 |
13
|
albidv |
⊢ ( 𝑦 = suc 𝑣 → ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑦 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ↔ ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ suc 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ) ) |
15 |
|
ensym |
⊢ ( ∅ ≈ 𝑥 → 𝑥 ≈ ∅ ) |
16 |
|
en0 |
⊢ ( 𝑥 ≈ ∅ ↔ 𝑥 = ∅ ) |
17 |
15 16
|
sylib |
⊢ ( ∅ ≈ 𝑥 → 𝑥 = ∅ ) |
18 |
17
|
anim1i |
⊢ ( ( ∅ ≈ 𝑥 ∧ 𝑥 ≠ ∅ ) → ( 𝑥 = ∅ ∧ 𝑥 ≠ ∅ ) ) |
19 |
18
|
ancoms |
⊢ ( ( 𝑥 ≠ ∅ ∧ ∅ ≈ 𝑥 ) → ( 𝑥 = ∅ ∧ 𝑥 ≠ ∅ ) ) |
20 |
19
|
adantll |
⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ ∅ ≈ 𝑥 ) → ( 𝑥 = ∅ ∧ 𝑥 ≠ ∅ ) ) |
21 |
|
df-ne |
⊢ ( 𝑥 ≠ ∅ ↔ ¬ 𝑥 = ∅ ) |
22 |
|
pm3.24 |
⊢ ¬ ( 𝑥 = ∅ ∧ ¬ 𝑥 = ∅ ) |
23 |
22
|
pm2.21i |
⊢ ( ( 𝑥 = ∅ ∧ ¬ 𝑥 = ∅ ) → ∩ 𝑥 ∈ 𝐴 ) |
24 |
21 23
|
sylan2b |
⊢ ( ( 𝑥 = ∅ ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ∈ 𝐴 ) |
25 |
20 24
|
syl |
⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ ∅ ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) |
26 |
25
|
ax-gen |
⊢ ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ ∅ ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) |
27 |
26
|
a1i |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ ∅ ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ) |
28 |
|
nfv |
⊢ Ⅎ 𝑥 ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 |
29 |
|
nfa1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) |
30 |
|
bren |
⊢ ( suc 𝑣 ≈ 𝑥 ↔ ∃ 𝑓 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 ) |
31 |
|
ssel |
⊢ ( 𝑥 ⊆ 𝐴 → ( ( 𝑓 ‘ 𝑣 ) ∈ 𝑥 → ( 𝑓 ‘ 𝑣 ) ∈ 𝐴 ) ) |
32 |
|
f1of |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → 𝑓 : suc 𝑣 ⟶ 𝑥 ) |
33 |
|
vex |
⊢ 𝑣 ∈ V |
34 |
33
|
sucid |
⊢ 𝑣 ∈ suc 𝑣 |
35 |
|
ffvelrn |
⊢ ( ( 𝑓 : suc 𝑣 ⟶ 𝑥 ∧ 𝑣 ∈ suc 𝑣 ) → ( 𝑓 ‘ 𝑣 ) ∈ 𝑥 ) |
36 |
32 34 35
|
sylancl |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → ( 𝑓 ‘ 𝑣 ) ∈ 𝑥 ) |
37 |
31 36
|
impel |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 ) → ( 𝑓 ‘ 𝑣 ) ∈ 𝐴 ) |
38 |
37
|
adantr |
⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 ) ∧ ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ) ) → ( 𝑓 ‘ 𝑣 ) ∈ 𝐴 ) |
39 |
|
df-ne |
⊢ ( ( 𝑓 “ 𝑣 ) ≠ ∅ ↔ ¬ ( 𝑓 “ 𝑣 ) = ∅ ) |
40 |
|
imassrn |
⊢ ( 𝑓 “ 𝑣 ) ⊆ ran 𝑓 |
41 |
|
dff1o2 |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 ↔ ( 𝑓 Fn suc 𝑣 ∧ Fun ◡ 𝑓 ∧ ran 𝑓 = 𝑥 ) ) |
42 |
41
|
simp3bi |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → ran 𝑓 = 𝑥 ) |
43 |
40 42
|
sseqtrid |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → ( 𝑓 “ 𝑣 ) ⊆ 𝑥 ) |
44 |
|
sstr2 |
⊢ ( ( 𝑓 “ 𝑣 ) ⊆ 𝑥 → ( 𝑥 ⊆ 𝐴 → ( 𝑓 “ 𝑣 ) ⊆ 𝐴 ) ) |
45 |
43 44
|
syl |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → ( 𝑥 ⊆ 𝐴 → ( 𝑓 “ 𝑣 ) ⊆ 𝐴 ) ) |
46 |
45
|
anim1d |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → ( ( 𝑥 ⊆ 𝐴 ∧ ( 𝑓 “ 𝑣 ) ≠ ∅ ) → ( ( 𝑓 “ 𝑣 ) ⊆ 𝐴 ∧ ( 𝑓 “ 𝑣 ) ≠ ∅ ) ) ) |
47 |
|
f1of1 |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → 𝑓 : suc 𝑣 –1-1→ 𝑥 ) |
48 |
|
vex |
⊢ 𝑥 ∈ V |
49 |
|
sssucid |
⊢ 𝑣 ⊆ suc 𝑣 |
50 |
|
f1imaen2g |
⊢ ( ( ( 𝑓 : suc 𝑣 –1-1→ 𝑥 ∧ 𝑥 ∈ V ) ∧ ( 𝑣 ⊆ suc 𝑣 ∧ 𝑣 ∈ V ) ) → ( 𝑓 “ 𝑣 ) ≈ 𝑣 ) |
51 |
49 33 50
|
mpanr12 |
⊢ ( ( 𝑓 : suc 𝑣 –1-1→ 𝑥 ∧ 𝑥 ∈ V ) → ( 𝑓 “ 𝑣 ) ≈ 𝑣 ) |
52 |
47 48 51
|
sylancl |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → ( 𝑓 “ 𝑣 ) ≈ 𝑣 ) |
53 |
52
|
ensymd |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → 𝑣 ≈ ( 𝑓 “ 𝑣 ) ) |
54 |
46 53
|
jctird |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → ( ( 𝑥 ⊆ 𝐴 ∧ ( 𝑓 “ 𝑣 ) ≠ ∅ ) → ( ( ( 𝑓 “ 𝑣 ) ⊆ 𝐴 ∧ ( 𝑓 “ 𝑣 ) ≠ ∅ ) ∧ 𝑣 ≈ ( 𝑓 “ 𝑣 ) ) ) ) |
55 |
|
vex |
⊢ 𝑓 ∈ V |
56 |
55
|
imaex |
⊢ ( 𝑓 “ 𝑣 ) ∈ V |
57 |
|
sseq1 |
⊢ ( 𝑥 = ( 𝑓 “ 𝑣 ) → ( 𝑥 ⊆ 𝐴 ↔ ( 𝑓 “ 𝑣 ) ⊆ 𝐴 ) ) |
58 |
|
neeq1 |
⊢ ( 𝑥 = ( 𝑓 “ 𝑣 ) → ( 𝑥 ≠ ∅ ↔ ( 𝑓 “ 𝑣 ) ≠ ∅ ) ) |
59 |
57 58
|
anbi12d |
⊢ ( 𝑥 = ( 𝑓 “ 𝑣 ) → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ↔ ( ( 𝑓 “ 𝑣 ) ⊆ 𝐴 ∧ ( 𝑓 “ 𝑣 ) ≠ ∅ ) ) ) |
60 |
|
breq2 |
⊢ ( 𝑥 = ( 𝑓 “ 𝑣 ) → ( 𝑣 ≈ 𝑥 ↔ 𝑣 ≈ ( 𝑓 “ 𝑣 ) ) ) |
61 |
59 60
|
anbi12d |
⊢ ( 𝑥 = ( 𝑓 “ 𝑣 ) → ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) ↔ ( ( ( 𝑓 “ 𝑣 ) ⊆ 𝐴 ∧ ( 𝑓 “ 𝑣 ) ≠ ∅ ) ∧ 𝑣 ≈ ( 𝑓 “ 𝑣 ) ) ) ) |
62 |
|
inteq |
⊢ ( 𝑥 = ( 𝑓 “ 𝑣 ) → ∩ 𝑥 = ∩ ( 𝑓 “ 𝑣 ) ) |
63 |
62
|
eleq1d |
⊢ ( 𝑥 = ( 𝑓 “ 𝑣 ) → ( ∩ 𝑥 ∈ 𝐴 ↔ ∩ ( 𝑓 “ 𝑣 ) ∈ 𝐴 ) ) |
64 |
61 63
|
imbi12d |
⊢ ( 𝑥 = ( 𝑓 “ 𝑣 ) → ( ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ↔ ( ( ( ( 𝑓 “ 𝑣 ) ⊆ 𝐴 ∧ ( 𝑓 “ 𝑣 ) ≠ ∅ ) ∧ 𝑣 ≈ ( 𝑓 “ 𝑣 ) ) → ∩ ( 𝑓 “ 𝑣 ) ∈ 𝐴 ) ) ) |
65 |
56 64
|
spcv |
⊢ ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) → ( ( ( ( 𝑓 “ 𝑣 ) ⊆ 𝐴 ∧ ( 𝑓 “ 𝑣 ) ≠ ∅ ) ∧ 𝑣 ≈ ( 𝑓 “ 𝑣 ) ) → ∩ ( 𝑓 “ 𝑣 ) ∈ 𝐴 ) ) |
66 |
54 65
|
sylan9 |
⊢ ( ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 ∧ ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ) → ( ( 𝑥 ⊆ 𝐴 ∧ ( 𝑓 “ 𝑣 ) ≠ ∅ ) → ∩ ( 𝑓 “ 𝑣 ) ∈ 𝐴 ) ) |
67 |
|
ineq1 |
⊢ ( 𝑧 = ∩ ( 𝑓 “ 𝑣 ) → ( 𝑧 ∩ 𝑤 ) = ( ∩ ( 𝑓 “ 𝑣 ) ∩ 𝑤 ) ) |
68 |
67
|
eleq1d |
⊢ ( 𝑧 = ∩ ( 𝑓 “ 𝑣 ) → ( ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ↔ ( ∩ ( 𝑓 “ 𝑣 ) ∩ 𝑤 ) ∈ 𝐴 ) ) |
69 |
|
ineq2 |
⊢ ( 𝑤 = ( 𝑓 ‘ 𝑣 ) → ( ∩ ( 𝑓 “ 𝑣 ) ∩ 𝑤 ) = ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) ) |
70 |
69
|
eleq1d |
⊢ ( 𝑤 = ( 𝑓 ‘ 𝑣 ) → ( ( ∩ ( 𝑓 “ 𝑣 ) ∩ 𝑤 ) ∈ 𝐴 ↔ ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) ∈ 𝐴 ) ) |
71 |
68 70
|
rspc2v |
⊢ ( ( ∩ ( 𝑓 “ 𝑣 ) ∈ 𝐴 ∧ ( 𝑓 ‘ 𝑣 ) ∈ 𝐴 ) → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) ∈ 𝐴 ) ) |
72 |
71
|
ex |
⊢ ( ∩ ( 𝑓 “ 𝑣 ) ∈ 𝐴 → ( ( 𝑓 ‘ 𝑣 ) ∈ 𝐴 → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) ∈ 𝐴 ) ) ) |
73 |
66 72
|
syl6 |
⊢ ( ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 ∧ ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ) → ( ( 𝑥 ⊆ 𝐴 ∧ ( 𝑓 “ 𝑣 ) ≠ ∅ ) → ( ( 𝑓 ‘ 𝑣 ) ∈ 𝐴 → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) ∈ 𝐴 ) ) ) ) |
74 |
73
|
com4r |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ( ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 ∧ ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ) → ( ( 𝑥 ⊆ 𝐴 ∧ ( 𝑓 “ 𝑣 ) ≠ ∅ ) → ( ( 𝑓 ‘ 𝑣 ) ∈ 𝐴 → ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) ∈ 𝐴 ) ) ) ) |
75 |
74
|
exp5c |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) → ( 𝑥 ⊆ 𝐴 → ( ( 𝑓 “ 𝑣 ) ≠ ∅ → ( ( 𝑓 ‘ 𝑣 ) ∈ 𝐴 → ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) ∈ 𝐴 ) ) ) ) ) ) |
76 |
75
|
com14 |
⊢ ( 𝑥 ⊆ 𝐴 → ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ( ( 𝑓 “ 𝑣 ) ≠ ∅ → ( ( 𝑓 ‘ 𝑣 ) ∈ 𝐴 → ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) ∈ 𝐴 ) ) ) ) ) ) |
77 |
76
|
imp43 |
⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 ) ∧ ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ) ) → ( ( 𝑓 “ 𝑣 ) ≠ ∅ → ( ( 𝑓 ‘ 𝑣 ) ∈ 𝐴 → ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) ∈ 𝐴 ) ) ) |
78 |
39 77
|
syl5bir |
⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 ) ∧ ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ) ) → ( ¬ ( 𝑓 “ 𝑣 ) = ∅ → ( ( 𝑓 ‘ 𝑣 ) ∈ 𝐴 → ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) ∈ 𝐴 ) ) ) |
79 |
|
inteq |
⊢ ( ( 𝑓 “ 𝑣 ) = ∅ → ∩ ( 𝑓 “ 𝑣 ) = ∩ ∅ ) |
80 |
|
int0 |
⊢ ∩ ∅ = V |
81 |
79 80
|
eqtrdi |
⊢ ( ( 𝑓 “ 𝑣 ) = ∅ → ∩ ( 𝑓 “ 𝑣 ) = V ) |
82 |
81
|
ineq1d |
⊢ ( ( 𝑓 “ 𝑣 ) = ∅ → ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) = ( V ∩ ( 𝑓 ‘ 𝑣 ) ) ) |
83 |
|
ssv |
⊢ ( 𝑓 ‘ 𝑣 ) ⊆ V |
84 |
|
sseqin2 |
⊢ ( ( 𝑓 ‘ 𝑣 ) ⊆ V ↔ ( V ∩ ( 𝑓 ‘ 𝑣 ) ) = ( 𝑓 ‘ 𝑣 ) ) |
85 |
83 84
|
mpbi |
⊢ ( V ∩ ( 𝑓 ‘ 𝑣 ) ) = ( 𝑓 ‘ 𝑣 ) |
86 |
82 85
|
eqtrdi |
⊢ ( ( 𝑓 “ 𝑣 ) = ∅ → ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) = ( 𝑓 ‘ 𝑣 ) ) |
87 |
86
|
eleq1d |
⊢ ( ( 𝑓 “ 𝑣 ) = ∅ → ( ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) ∈ 𝐴 ↔ ( 𝑓 ‘ 𝑣 ) ∈ 𝐴 ) ) |
88 |
87
|
biimprd |
⊢ ( ( 𝑓 “ 𝑣 ) = ∅ → ( ( 𝑓 ‘ 𝑣 ) ∈ 𝐴 → ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) ∈ 𝐴 ) ) |
89 |
78 88
|
pm2.61d2 |
⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 ) ∧ ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ) ) → ( ( 𝑓 ‘ 𝑣 ) ∈ 𝐴 → ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) ∈ 𝐴 ) ) |
90 |
38 89
|
mpd |
⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 ) ∧ ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ) ) → ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) ∈ 𝐴 ) |
91 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑣 ) ∈ V |
92 |
91
|
intunsn |
⊢ ∩ ( ( 𝑓 “ 𝑣 ) ∪ { ( 𝑓 ‘ 𝑣 ) } ) = ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) |
93 |
|
f1ofn |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → 𝑓 Fn suc 𝑣 ) |
94 |
|
fnsnfv |
⊢ ( ( 𝑓 Fn suc 𝑣 ∧ 𝑣 ∈ suc 𝑣 ) → { ( 𝑓 ‘ 𝑣 ) } = ( 𝑓 “ { 𝑣 } ) ) |
95 |
93 34 94
|
sylancl |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → { ( 𝑓 ‘ 𝑣 ) } = ( 𝑓 “ { 𝑣 } ) ) |
96 |
95
|
uneq2d |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → ( ( 𝑓 “ 𝑣 ) ∪ { ( 𝑓 ‘ 𝑣 ) } ) = ( ( 𝑓 “ 𝑣 ) ∪ ( 𝑓 “ { 𝑣 } ) ) ) |
97 |
|
df-suc |
⊢ suc 𝑣 = ( 𝑣 ∪ { 𝑣 } ) |
98 |
97
|
imaeq2i |
⊢ ( 𝑓 “ suc 𝑣 ) = ( 𝑓 “ ( 𝑣 ∪ { 𝑣 } ) ) |
99 |
|
imaundi |
⊢ ( 𝑓 “ ( 𝑣 ∪ { 𝑣 } ) ) = ( ( 𝑓 “ 𝑣 ) ∪ ( 𝑓 “ { 𝑣 } ) ) |
100 |
98 99
|
eqtr2i |
⊢ ( ( 𝑓 “ 𝑣 ) ∪ ( 𝑓 “ { 𝑣 } ) ) = ( 𝑓 “ suc 𝑣 ) |
101 |
96 100
|
eqtrdi |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → ( ( 𝑓 “ 𝑣 ) ∪ { ( 𝑓 ‘ 𝑣 ) } ) = ( 𝑓 “ suc 𝑣 ) ) |
102 |
|
f1ofo |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → 𝑓 : suc 𝑣 –onto→ 𝑥 ) |
103 |
|
foima |
⊢ ( 𝑓 : suc 𝑣 –onto→ 𝑥 → ( 𝑓 “ suc 𝑣 ) = 𝑥 ) |
104 |
102 103
|
syl |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → ( 𝑓 “ suc 𝑣 ) = 𝑥 ) |
105 |
101 104
|
eqtrd |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → ( ( 𝑓 “ 𝑣 ) ∪ { ( 𝑓 ‘ 𝑣 ) } ) = 𝑥 ) |
106 |
105
|
inteqd |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → ∩ ( ( 𝑓 “ 𝑣 ) ∪ { ( 𝑓 ‘ 𝑣 ) } ) = ∩ 𝑥 ) |
107 |
92 106
|
eqtr3id |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) = ∩ 𝑥 ) |
108 |
107
|
eleq1d |
⊢ ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → ( ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) ∈ 𝐴 ↔ ∩ 𝑥 ∈ 𝐴 ) ) |
109 |
108
|
ad2antlr |
⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 ) ∧ ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ) ) → ( ( ∩ ( 𝑓 “ 𝑣 ) ∩ ( 𝑓 ‘ 𝑣 ) ) ∈ 𝐴 ↔ ∩ 𝑥 ∈ 𝐴 ) ) |
110 |
90 109
|
mpbid |
⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 ) ∧ ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ∧ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ) ) → ∩ 𝑥 ∈ 𝐴 ) |
111 |
110
|
exp43 |
⊢ ( 𝑥 ⊆ 𝐴 → ( 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 ) ) ) ) |
112 |
111
|
exlimdv |
⊢ ( 𝑥 ⊆ 𝐴 → ( ∃ 𝑓 𝑓 : suc 𝑣 –1-1-onto→ 𝑥 → ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 ) ) ) ) |
113 |
30 112
|
syl5bi |
⊢ ( 𝑥 ⊆ 𝐴 → ( suc 𝑣 ≈ 𝑥 → ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 ) ) ) ) |
114 |
113
|
imp |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ suc 𝑣 ≈ 𝑥 ) → ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 ) ) ) |
115 |
114
|
adantlr |
⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ suc 𝑣 ≈ 𝑥 ) → ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 ) ) ) |
116 |
115
|
com13 |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ suc 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ) ) |
117 |
28 29 116
|
alrimd |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) → ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ suc 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ) ) |
118 |
117
|
a1i |
⊢ ( 𝑣 ∈ ω → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) → ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ suc 𝑣 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ) ) ) |
119 |
6 10 14 27 118
|
finds2 |
⊢ ( 𝑦 ∈ ω → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑦 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ) ) |
120 |
|
sp |
⊢ ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑦 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) → ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑦 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ) |
121 |
119 120
|
syl6 |
⊢ ( 𝑦 ∈ ω → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑦 ≈ 𝑥 ) → ∩ 𝑥 ∈ 𝐴 ) ) ) |
122 |
121
|
exp4a |
⊢ ( 𝑦 ∈ ω → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ( 𝑦 ≈ 𝑥 → ∩ 𝑥 ∈ 𝐴 ) ) ) ) |
123 |
122
|
com24 |
⊢ ( 𝑦 ∈ ω → ( 𝑦 ≈ 𝑥 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 ) ) ) ) |
124 |
2 123
|
syl5 |
⊢ ( 𝑦 ∈ ω → ( 𝑥 ≈ 𝑦 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 ) ) ) ) |
125 |
124
|
rexlimiv |
⊢ ( ∃ 𝑦 ∈ ω 𝑥 ≈ 𝑦 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 ) ) ) |
126 |
1 125
|
sylbi |
⊢ ( 𝑥 ∈ Fin → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 ) ) ) |
127 |
126
|
com13 |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ( 𝑥 ∈ Fin → ∩ 𝑥 ∈ 𝐴 ) ) ) |
128 |
127
|
impd |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝐴 ) ) |
129 |
128
|
alrimiv |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 → ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝐴 ) ) |
130 |
|
zfpair2 |
⊢ { 𝑧 , 𝑤 } ∈ V |
131 |
|
sseq1 |
⊢ ( 𝑥 = { 𝑧 , 𝑤 } → ( 𝑥 ⊆ 𝐴 ↔ { 𝑧 , 𝑤 } ⊆ 𝐴 ) ) |
132 |
|
neeq1 |
⊢ ( 𝑥 = { 𝑧 , 𝑤 } → ( 𝑥 ≠ ∅ ↔ { 𝑧 , 𝑤 } ≠ ∅ ) ) |
133 |
131 132
|
anbi12d |
⊢ ( 𝑥 = { 𝑧 , 𝑤 } → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ↔ ( { 𝑧 , 𝑤 } ⊆ 𝐴 ∧ { 𝑧 , 𝑤 } ≠ ∅ ) ) ) |
134 |
|
eleq1 |
⊢ ( 𝑥 = { 𝑧 , 𝑤 } → ( 𝑥 ∈ Fin ↔ { 𝑧 , 𝑤 } ∈ Fin ) ) |
135 |
133 134
|
anbi12d |
⊢ ( 𝑥 = { 𝑧 , 𝑤 } → ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ Fin ) ↔ ( ( { 𝑧 , 𝑤 } ⊆ 𝐴 ∧ { 𝑧 , 𝑤 } ≠ ∅ ) ∧ { 𝑧 , 𝑤 } ∈ Fin ) ) ) |
136 |
|
inteq |
⊢ ( 𝑥 = { 𝑧 , 𝑤 } → ∩ 𝑥 = ∩ { 𝑧 , 𝑤 } ) |
137 |
136
|
eleq1d |
⊢ ( 𝑥 = { 𝑧 , 𝑤 } → ( ∩ 𝑥 ∈ 𝐴 ↔ ∩ { 𝑧 , 𝑤 } ∈ 𝐴 ) ) |
138 |
135 137
|
imbi12d |
⊢ ( 𝑥 = { 𝑧 , 𝑤 } → ( ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝐴 ) ↔ ( ( ( { 𝑧 , 𝑤 } ⊆ 𝐴 ∧ { 𝑧 , 𝑤 } ≠ ∅ ) ∧ { 𝑧 , 𝑤 } ∈ Fin ) → ∩ { 𝑧 , 𝑤 } ∈ 𝐴 ) ) ) |
139 |
130 138
|
spcv |
⊢ ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝐴 ) → ( ( ( { 𝑧 , 𝑤 } ⊆ 𝐴 ∧ { 𝑧 , 𝑤 } ≠ ∅ ) ∧ { 𝑧 , 𝑤 } ∈ Fin ) → ∩ { 𝑧 , 𝑤 } ∈ 𝐴 ) ) |
140 |
|
vex |
⊢ 𝑧 ∈ V |
141 |
|
vex |
⊢ 𝑤 ∈ V |
142 |
140 141
|
prss |
⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ↔ { 𝑧 , 𝑤 } ⊆ 𝐴 ) |
143 |
140
|
prnz |
⊢ { 𝑧 , 𝑤 } ≠ ∅ |
144 |
143
|
biantru |
⊢ ( { 𝑧 , 𝑤 } ⊆ 𝐴 ↔ ( { 𝑧 , 𝑤 } ⊆ 𝐴 ∧ { 𝑧 , 𝑤 } ≠ ∅ ) ) |
145 |
|
prfi |
⊢ { 𝑧 , 𝑤 } ∈ Fin |
146 |
145
|
biantru |
⊢ ( ( { 𝑧 , 𝑤 } ⊆ 𝐴 ∧ { 𝑧 , 𝑤 } ≠ ∅ ) ↔ ( ( { 𝑧 , 𝑤 } ⊆ 𝐴 ∧ { 𝑧 , 𝑤 } ≠ ∅ ) ∧ { 𝑧 , 𝑤 } ∈ Fin ) ) |
147 |
142 144 146
|
3bitrri |
⊢ ( ( ( { 𝑧 , 𝑤 } ⊆ 𝐴 ∧ { 𝑧 , 𝑤 } ≠ ∅ ) ∧ { 𝑧 , 𝑤 } ∈ Fin ) ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) |
148 |
140 141
|
intpr |
⊢ ∩ { 𝑧 , 𝑤 } = ( 𝑧 ∩ 𝑤 ) |
149 |
148
|
eleq1i |
⊢ ( ∩ { 𝑧 , 𝑤 } ∈ 𝐴 ↔ ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ) |
150 |
139 147 149
|
3imtr3g |
⊢ ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝐴 ) → ( ( 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) → ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ) ) |
151 |
150
|
ralrimivv |
⊢ ( ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝐴 ) → ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ) |
152 |
129 151
|
impbii |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ↔ ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝐴 ) ) |
153 |
|
ineq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∩ 𝑦 ) = ( 𝑧 ∩ 𝑦 ) ) |
154 |
153
|
eleq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 ↔ ( 𝑧 ∩ 𝑦 ) ∈ 𝐴 ) ) |
155 |
|
ineq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑧 ∩ 𝑦 ) = ( 𝑧 ∩ 𝑤 ) ) |
156 |
155
|
eleq1d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑧 ∩ 𝑦 ) ∈ 𝐴 ↔ ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ) ) |
157 |
154 156
|
cbvral2vw |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 ↔ ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ) |
158 |
|
df-3an |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) ↔ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ Fin ) ) |
159 |
158
|
imbi1i |
⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝐴 ) ↔ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝐴 ) ) |
160 |
159
|
albii |
⊢ ( ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝐴 ) ↔ ∀ 𝑥 ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝐴 ) ) |
161 |
152 157 160
|
3bitr4i |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ∩ 𝑦 ) ∈ 𝐴 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin ) → ∩ 𝑥 ∈ 𝐴 ) ) |