Metamath Proof Explorer
		
		
		
		Description:  Properties that determine a topological space.  (Contributed by NM, 20-Oct-2012)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | istpsi.b | ⊢ ( Base ‘ 𝐾 )  =  𝐴 | 
					
						|  |  | istpsi.j | ⊢ ( TopOpen ‘ 𝐾 )  =  𝐽 | 
					
						|  |  | istpsi.1 | ⊢ 𝐴  =  ∪  𝐽 | 
					
						|  |  | istpsi.2 | ⊢ 𝐽  ∈  Top | 
				
					|  | Assertion | istpsi | ⊢  𝐾  ∈  TopSp | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | istpsi.b | ⊢ ( Base ‘ 𝐾 )  =  𝐴 | 
						
							| 2 |  | istpsi.j | ⊢ ( TopOpen ‘ 𝐾 )  =  𝐽 | 
						
							| 3 |  | istpsi.1 | ⊢ 𝐴  =  ∪  𝐽 | 
						
							| 4 |  | istpsi.2 | ⊢ 𝐽  ∈  Top | 
						
							| 5 | 1 | eqcomi | ⊢ 𝐴  =  ( Base ‘ 𝐾 ) | 
						
							| 6 | 2 | eqcomi | ⊢ 𝐽  =  ( TopOpen ‘ 𝐾 ) | 
						
							| 7 | 5 6 | istps2 | ⊢ ( 𝐾  ∈  TopSp  ↔  ( 𝐽  ∈  Top  ∧  𝐴  =  ∪  𝐽 ) ) | 
						
							| 8 | 4 3 7 | mpbir2an | ⊢ 𝐾  ∈  TopSp |