Metamath Proof Explorer


Theorem isum

Description: Series sum with an upper integer index set (i.e. an infinite series). (Contributed by Mario Carneiro, 15-Jul-2013) (Revised by Mario Carneiro, 7-Apr-2014)

Ref Expression
Hypotheses zsum.1 𝑍 = ( ℤ𝑀 )
zsum.2 ( 𝜑𝑀 ∈ ℤ )
isum.3 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐵 )
isum.4 ( ( 𝜑𝑘𝑍 ) → 𝐵 ∈ ℂ )
Assertion isum ( 𝜑 → Σ 𝑘𝑍 𝐵 = ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) )

Proof

Step Hyp Ref Expression
1 zsum.1 𝑍 = ( ℤ𝑀 )
2 zsum.2 ( 𝜑𝑀 ∈ ℤ )
3 isum.3 ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = 𝐵 )
4 isum.4 ( ( 𝜑𝑘𝑍 ) → 𝐵 ∈ ℂ )
5 ssidd ( 𝜑𝑍𝑍 )
6 iftrue ( 𝑘𝑍 → if ( 𝑘𝑍 , 𝐵 , 0 ) = 𝐵 )
7 6 adantl ( ( 𝜑𝑘𝑍 ) → if ( 𝑘𝑍 , 𝐵 , 0 ) = 𝐵 )
8 3 7 eqtr4d ( ( 𝜑𝑘𝑍 ) → ( 𝐹𝑘 ) = if ( 𝑘𝑍 , 𝐵 , 0 ) )
9 1 2 5 8 4 zsum ( 𝜑 → Σ 𝑘𝑍 𝐵 = ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) )