Description: Series sum with an upper integer index set (i.e. an infinite series). (Contributed by Mario Carneiro, 15-Jul-2013) (Revised by Mario Carneiro, 7-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | zsum.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
zsum.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
isum.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐵 ) | ||
isum.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) | ||
Assertion | isum | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐵 = ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zsum.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
2 | zsum.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
3 | isum.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐵 ) | |
4 | isum.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) | |
5 | ssidd | ⊢ ( 𝜑 → 𝑍 ⊆ 𝑍 ) | |
6 | iftrue | ⊢ ( 𝑘 ∈ 𝑍 → if ( 𝑘 ∈ 𝑍 , 𝐵 , 0 ) = 𝐵 ) | |
7 | 6 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → if ( 𝑘 ∈ 𝑍 , 𝐵 , 0 ) = 𝐵 ) |
8 | 3 7 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝑍 , 𝐵 , 0 ) ) |
9 | 1 2 5 8 4 | zsum | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐵 = ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) |