| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itg2val.1 |
⊢ 𝐿 = { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } |
| 2 |
|
itg1cl |
⊢ ( 𝑔 ∈ dom ∫1 → ( ∫1 ‘ 𝑔 ) ∈ ℝ ) |
| 3 |
2
|
rexrd |
⊢ ( 𝑔 ∈ dom ∫1 → ( ∫1 ‘ 𝑔 ) ∈ ℝ* ) |
| 4 |
|
simpr |
⊢ ( ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) → 𝑥 = ( ∫1 ‘ 𝑔 ) ) |
| 5 |
4
|
eleq1d |
⊢ ( ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) → ( 𝑥 ∈ ℝ* ↔ ( ∫1 ‘ 𝑔 ) ∈ ℝ* ) ) |
| 6 |
3 5
|
syl5ibrcom |
⊢ ( 𝑔 ∈ dom ∫1 → ( ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) → 𝑥 ∈ ℝ* ) ) |
| 7 |
6
|
rexlimiv |
⊢ ( ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) → 𝑥 ∈ ℝ* ) |
| 8 |
7
|
abssi |
⊢ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( 𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } ⊆ ℝ* |
| 9 |
1 8
|
eqsstri |
⊢ 𝐿 ⊆ ℝ* |