Metamath Proof Explorer


Theorem itgitg2

Description: Transfer an integral using S.2 to an equivalent integral using S. . (Contributed by Mario Carneiro, 6-Aug-2014)

Ref Expression
Hypotheses itgitg2.1 ( ( 𝜑𝑥 ∈ ℝ ) → 𝐴 ∈ ℝ )
itgitg2.2 ( ( 𝜑𝑥 ∈ ℝ ) → 0 ≤ 𝐴 )
itgitg2.3 ( 𝜑 → ( 𝑥 ∈ ℝ ↦ 𝐴 ) ∈ 𝐿1 )
Assertion itgitg2 ( 𝜑 → ∫ ℝ 𝐴 d 𝑥 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 itgitg2.1 ( ( 𝜑𝑥 ∈ ℝ ) → 𝐴 ∈ ℝ )
2 itgitg2.2 ( ( 𝜑𝑥 ∈ ℝ ) → 0 ≤ 𝐴 )
3 itgitg2.3 ( 𝜑 → ( 𝑥 ∈ ℝ ↦ 𝐴 ) ∈ 𝐿1 )
4 1 3 2 itgposval ( 𝜑 → ∫ ℝ 𝐴 d 𝑥 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ℝ , 𝐴 , 0 ) ) ) )
5 iftrue ( 𝑥 ∈ ℝ → if ( 𝑥 ∈ ℝ , 𝐴 , 0 ) = 𝐴 )
6 5 mpteq2ia ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ℝ , 𝐴 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ 𝐴 )
7 6 fveq2i ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ℝ , 𝐴 , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ 𝐴 ) )
8 4 7 eqtrdi ( 𝜑 → ∫ ℝ 𝐴 d 𝑥 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ 𝐴 ) ) )