Metamath Proof Explorer


Theorem ixpssmapg

Description: An infinite Cartesian product is a subset of set exponentiation. (Contributed by Jeff Madsen, 19-Jun-2011)

Ref Expression
Assertion ixpssmapg ( ∀ 𝑥𝐴 𝐵𝑉X 𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴 ) )

Proof

Step Hyp Ref Expression
1 n0i ( 𝑓X 𝑥𝐴 𝐵 → ¬ X 𝑥𝐴 𝐵 = ∅ )
2 ixpprc ( ¬ 𝐴 ∈ V → X 𝑥𝐴 𝐵 = ∅ )
3 1 2 nsyl2 ( 𝑓X 𝑥𝐴 𝐵𝐴 ∈ V )
4 id ( ∀ 𝑥𝐴 𝐵𝑉 → ∀ 𝑥𝐴 𝐵𝑉 )
5 iunexg ( ( 𝐴 ∈ V ∧ ∀ 𝑥𝐴 𝐵𝑉 ) → 𝑥𝐴 𝐵 ∈ V )
6 3 4 5 syl2anr ( ( ∀ 𝑥𝐴 𝐵𝑉𝑓X 𝑥𝐴 𝐵 ) → 𝑥𝐴 𝐵 ∈ V )
7 ixpssmap2g ( 𝑥𝐴 𝐵 ∈ V → X 𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴 ) )
8 6 7 syl ( ( ∀ 𝑥𝐴 𝐵𝑉𝑓X 𝑥𝐴 𝐵 ) → X 𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴 ) )
9 simpr ( ( ∀ 𝑥𝐴 𝐵𝑉𝑓X 𝑥𝐴 𝐵 ) → 𝑓X 𝑥𝐴 𝐵 )
10 8 9 sseldd ( ( ∀ 𝑥𝐴 𝐵𝑉𝑓X 𝑥𝐴 𝐵 ) → 𝑓 ∈ ( 𝑥𝐴 𝐵m 𝐴 ) )
11 10 ex ( ∀ 𝑥𝐴 𝐵𝑉 → ( 𝑓X 𝑥𝐴 𝐵𝑓 ∈ ( 𝑥𝐴 𝐵m 𝐴 ) ) )
12 11 ssrdv ( ∀ 𝑥𝐴 𝐵𝑉X 𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴 ) )