Metamath Proof Explorer


Theorem knoppndvlem3

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 15-Jun-2021)

Ref Expression
Hypothesis knoppndvlem3.c ( 𝜑𝐶 ∈ ( - 1 (,) 1 ) )
Assertion knoppndvlem3 ( 𝜑 → ( 𝐶 ∈ ℝ ∧ ( abs ‘ 𝐶 ) < 1 ) )

Proof

Step Hyp Ref Expression
1 knoppndvlem3.c ( 𝜑𝐶 ∈ ( - 1 (,) 1 ) )
2 elioore ( 𝐶 ∈ ( - 1 (,) 1 ) → 𝐶 ∈ ℝ )
3 1 2 syl ( 𝜑𝐶 ∈ ℝ )
4 eliooord ( 𝐶 ∈ ( - 1 (,) 1 ) → ( - 1 < 𝐶𝐶 < 1 ) )
5 1 4 syl ( 𝜑 → ( - 1 < 𝐶𝐶 < 1 ) )
6 1red ( 𝜑 → 1 ∈ ℝ )
7 3 6 absltd ( 𝜑 → ( ( abs ‘ 𝐶 ) < 1 ↔ ( - 1 < 𝐶𝐶 < 1 ) ) )
8 5 7 mpbird ( 𝜑 → ( abs ‘ 𝐶 ) < 1 )
9 3 8 jca ( 𝜑 → ( 𝐶 ∈ ℝ ∧ ( abs ‘ 𝐶 ) < 1 ) )