Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 15-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | knoppndvlem3.c | ⊢ ( 𝜑 → 𝐶 ∈ ( - 1 (,) 1 ) ) | |
Assertion | knoppndvlem3 | ⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ ( abs ‘ 𝐶 ) < 1 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | knoppndvlem3.c | ⊢ ( 𝜑 → 𝐶 ∈ ( - 1 (,) 1 ) ) | |
2 | elioore | ⊢ ( 𝐶 ∈ ( - 1 (,) 1 ) → 𝐶 ∈ ℝ ) | |
3 | 1 2 | syl | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
4 | eliooord | ⊢ ( 𝐶 ∈ ( - 1 (,) 1 ) → ( - 1 < 𝐶 ∧ 𝐶 < 1 ) ) | |
5 | 1 4 | syl | ⊢ ( 𝜑 → ( - 1 < 𝐶 ∧ 𝐶 < 1 ) ) |
6 | 1red | ⊢ ( 𝜑 → 1 ∈ ℝ ) | |
7 | 3 6 | absltd | ⊢ ( 𝜑 → ( ( abs ‘ 𝐶 ) < 1 ↔ ( - 1 < 𝐶 ∧ 𝐶 < 1 ) ) ) |
8 | 5 7 | mpbird | ⊢ ( 𝜑 → ( abs ‘ 𝐶 ) < 1 ) |
9 | 3 8 | jca | ⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ ( abs ‘ 𝐶 ) < 1 ) ) |