Step |
Hyp |
Ref |
Expression |
1 |
|
knoppndvlem4.t |
⊢ 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) ) |
2 |
|
knoppndvlem4.f |
⊢ 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶 ↑ 𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) ) |
3 |
|
knoppndvlem4.w |
⊢ 𝑊 = ( 𝑤 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) ) |
4 |
|
knoppndvlem4.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
5 |
|
knoppndvlem4.c |
⊢ ( 𝜑 → 𝐶 ∈ ( - 1 (,) 1 ) ) |
6 |
|
knoppndvlem4.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
7 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
8 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
9 |
5
|
knoppndvlem3 |
⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ ( abs ‘ 𝐶 ) < 1 ) ) |
10 |
9
|
simpld |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
11 |
1 2 6 10
|
knoppcnlem8 |
⊢ ( 𝜑 → seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) : ℕ0 ⟶ ( ℂ ↑m ℝ ) ) |
12 |
|
seqex |
⊢ seq 0 ( + , ( 𝐹 ‘ 𝐴 ) ) ∈ V |
13 |
12
|
a1i |
⊢ ( 𝜑 → seq 0 ( + , ( 𝐹 ‘ 𝐴 ) ) ∈ V ) |
14 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑁 ∈ ℕ ) |
15 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐶 ∈ ℝ ) |
16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
17 |
1 2 14 15 16
|
knoppcnlem7 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ‘ 𝑘 ) = ( 𝑣 ∈ ℝ ↦ ( seq 0 ( + , ( 𝐹 ‘ 𝑣 ) ) ‘ 𝑘 ) ) ) |
18 |
17
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ‘ 𝑘 ) ‘ 𝐴 ) = ( ( 𝑣 ∈ ℝ ↦ ( seq 0 ( + , ( 𝐹 ‘ 𝑣 ) ) ‘ 𝑘 ) ) ‘ 𝐴 ) ) |
19 |
|
eqid |
⊢ ( 𝑣 ∈ ℝ ↦ ( seq 0 ( + , ( 𝐹 ‘ 𝑣 ) ) ‘ 𝑘 ) ) = ( 𝑣 ∈ ℝ ↦ ( seq 0 ( + , ( 𝐹 ‘ 𝑣 ) ) ‘ 𝑘 ) ) |
20 |
|
fveq2 |
⊢ ( 𝑣 = 𝐴 → ( 𝐹 ‘ 𝑣 ) = ( 𝐹 ‘ 𝐴 ) ) |
21 |
20
|
seqeq3d |
⊢ ( 𝑣 = 𝐴 → seq 0 ( + , ( 𝐹 ‘ 𝑣 ) ) = seq 0 ( + , ( 𝐹 ‘ 𝐴 ) ) ) |
22 |
21
|
fveq1d |
⊢ ( 𝑣 = 𝐴 → ( seq 0 ( + , ( 𝐹 ‘ 𝑣 ) ) ‘ 𝑘 ) = ( seq 0 ( + , ( 𝐹 ‘ 𝐴 ) ) ‘ 𝑘 ) ) |
23 |
|
fvexd |
⊢ ( 𝜑 → ( seq 0 ( + , ( 𝐹 ‘ 𝐴 ) ) ‘ 𝑘 ) ∈ V ) |
24 |
19 22 4 23
|
fvmptd3 |
⊢ ( 𝜑 → ( ( 𝑣 ∈ ℝ ↦ ( seq 0 ( + , ( 𝐹 ‘ 𝑣 ) ) ‘ 𝑘 ) ) ‘ 𝐴 ) = ( seq 0 ( + , ( 𝐹 ‘ 𝐴 ) ) ‘ 𝑘 ) ) |
25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑣 ∈ ℝ ↦ ( seq 0 ( + , ( 𝐹 ‘ 𝑣 ) ) ‘ 𝑘 ) ) ‘ 𝐴 ) = ( seq 0 ( + , ( 𝐹 ‘ 𝐴 ) ) ‘ 𝑘 ) ) |
26 |
18 25
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ‘ 𝑘 ) ‘ 𝐴 ) = ( seq 0 ( + , ( 𝐹 ‘ 𝐴 ) ) ‘ 𝑘 ) ) |
27 |
9
|
simprd |
⊢ ( 𝜑 → ( abs ‘ 𝐶 ) < 1 ) |
28 |
1 2 3 6 10 27
|
knoppcnlem9 |
⊢ ( 𝜑 → seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹 ‘ 𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑊 ) |
29 |
7 8 11 4 13 26 28
|
ulmclm |
⊢ ( 𝜑 → seq 0 ( + , ( 𝐹 ‘ 𝐴 ) ) ⇝ ( 𝑊 ‘ 𝐴 ) ) |