Metamath Proof Explorer


Theorem knoppndvlem4

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 15-Jun-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppndvlem4.t 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) )
knoppndvlem4.f 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) )
knoppndvlem4.w 𝑊 = ( 𝑤 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹𝑤 ) ‘ 𝑖 ) )
knoppndvlem4.a ( 𝜑𝐴 ∈ ℝ )
knoppndvlem4.c ( 𝜑𝐶 ∈ ( - 1 (,) 1 ) )
knoppndvlem4.n ( 𝜑𝑁 ∈ ℕ )
Assertion knoppndvlem4 ( 𝜑 → seq 0 ( + , ( 𝐹𝐴 ) ) ⇝ ( 𝑊𝐴 ) )

Proof

Step Hyp Ref Expression
1 knoppndvlem4.t 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) )
2 knoppndvlem4.f 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) )
3 knoppndvlem4.w 𝑊 = ( 𝑤 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹𝑤 ) ‘ 𝑖 ) )
4 knoppndvlem4.a ( 𝜑𝐴 ∈ ℝ )
5 knoppndvlem4.c ( 𝜑𝐶 ∈ ( - 1 (,) 1 ) )
6 knoppndvlem4.n ( 𝜑𝑁 ∈ ℕ )
7 nn0uz 0 = ( ℤ ‘ 0 )
8 0zd ( 𝜑 → 0 ∈ ℤ )
9 5 knoppndvlem3 ( 𝜑 → ( 𝐶 ∈ ℝ ∧ ( abs ‘ 𝐶 ) < 1 ) )
10 9 simpld ( 𝜑𝐶 ∈ ℝ )
11 1 2 6 10 knoppcnlem8 ( 𝜑 → seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹𝑧 ) ‘ 𝑚 ) ) ) ) : ℕ0 ⟶ ( ℂ ↑m ℝ ) )
12 seqex seq 0 ( + , ( 𝐹𝐴 ) ) ∈ V
13 12 a1i ( 𝜑 → seq 0 ( + , ( 𝐹𝐴 ) ) ∈ V )
14 6 adantr ( ( 𝜑𝑘 ∈ ℕ0 ) → 𝑁 ∈ ℕ )
15 10 adantr ( ( 𝜑𝑘 ∈ ℕ0 ) → 𝐶 ∈ ℝ )
16 simpr ( ( 𝜑𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 )
17 1 2 14 15 16 knoppcnlem7 ( ( 𝜑𝑘 ∈ ℕ0 ) → ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹𝑧 ) ‘ 𝑚 ) ) ) ) ‘ 𝑘 ) = ( 𝑣 ∈ ℝ ↦ ( seq 0 ( + , ( 𝐹𝑣 ) ) ‘ 𝑘 ) ) )
18 17 fveq1d ( ( 𝜑𝑘 ∈ ℕ0 ) → ( ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹𝑧 ) ‘ 𝑚 ) ) ) ) ‘ 𝑘 ) ‘ 𝐴 ) = ( ( 𝑣 ∈ ℝ ↦ ( seq 0 ( + , ( 𝐹𝑣 ) ) ‘ 𝑘 ) ) ‘ 𝐴 ) )
19 eqid ( 𝑣 ∈ ℝ ↦ ( seq 0 ( + , ( 𝐹𝑣 ) ) ‘ 𝑘 ) ) = ( 𝑣 ∈ ℝ ↦ ( seq 0 ( + , ( 𝐹𝑣 ) ) ‘ 𝑘 ) )
20 fveq2 ( 𝑣 = 𝐴 → ( 𝐹𝑣 ) = ( 𝐹𝐴 ) )
21 20 seqeq3d ( 𝑣 = 𝐴 → seq 0 ( + , ( 𝐹𝑣 ) ) = seq 0 ( + , ( 𝐹𝐴 ) ) )
22 21 fveq1d ( 𝑣 = 𝐴 → ( seq 0 ( + , ( 𝐹𝑣 ) ) ‘ 𝑘 ) = ( seq 0 ( + , ( 𝐹𝐴 ) ) ‘ 𝑘 ) )
23 fvexd ( 𝜑 → ( seq 0 ( + , ( 𝐹𝐴 ) ) ‘ 𝑘 ) ∈ V )
24 19 22 4 23 fvmptd3 ( 𝜑 → ( ( 𝑣 ∈ ℝ ↦ ( seq 0 ( + , ( 𝐹𝑣 ) ) ‘ 𝑘 ) ) ‘ 𝐴 ) = ( seq 0 ( + , ( 𝐹𝐴 ) ) ‘ 𝑘 ) )
25 24 adantr ( ( 𝜑𝑘 ∈ ℕ0 ) → ( ( 𝑣 ∈ ℝ ↦ ( seq 0 ( + , ( 𝐹𝑣 ) ) ‘ 𝑘 ) ) ‘ 𝐴 ) = ( seq 0 ( + , ( 𝐹𝐴 ) ) ‘ 𝑘 ) )
26 18 25 eqtrd ( ( 𝜑𝑘 ∈ ℕ0 ) → ( ( seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹𝑧 ) ‘ 𝑚 ) ) ) ) ‘ 𝑘 ) ‘ 𝐴 ) = ( seq 0 ( + , ( 𝐹𝐴 ) ) ‘ 𝑘 ) )
27 9 simprd ( 𝜑 → ( abs ‘ 𝐶 ) < 1 )
28 1 2 3 6 10 27 knoppcnlem9 ( 𝜑 → seq 0 ( ∘f + , ( 𝑚 ∈ ℕ0 ↦ ( 𝑧 ∈ ℝ ↦ ( ( 𝐹𝑧 ) ‘ 𝑚 ) ) ) ) ( ⇝𝑢 ‘ ℝ ) 𝑊 )
29 7 8 11 4 13 26 28 ulmclm ( 𝜑 → seq 0 ( + , ( 𝐹𝐴 ) ) ⇝ ( 𝑊𝐴 ) )