Metamath Proof Explorer


Theorem knoppndvlem5

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 15-Jun-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppndvlem5.t 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) )
knoppndvlem5.f 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) )
knoppndvlem5.a ( 𝜑𝐴 ∈ ℝ )
knoppndvlem5.c ( 𝜑𝐶 ∈ ℝ )
knoppndvlem5.n ( 𝜑𝑁 ∈ ℕ )
Assertion knoppndvlem5 ( 𝜑 → Σ 𝑖 ∈ ( 0 ... 𝐽 ) ( ( 𝐹𝐴 ) ‘ 𝑖 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 knoppndvlem5.t 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) )
2 knoppndvlem5.f 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) )
3 knoppndvlem5.a ( 𝜑𝐴 ∈ ℝ )
4 knoppndvlem5.c ( 𝜑𝐶 ∈ ℝ )
5 knoppndvlem5.n ( 𝜑𝑁 ∈ ℕ )
6 fzfid ( 𝜑 → ( 0 ... 𝐽 ) ∈ Fin )
7 5 adantr ( ( 𝜑𝑖 ∈ ( 0 ... 𝐽 ) ) → 𝑁 ∈ ℕ )
8 4 adantr ( ( 𝜑𝑖 ∈ ( 0 ... 𝐽 ) ) → 𝐶 ∈ ℝ )
9 3 adantr ( ( 𝜑𝑖 ∈ ( 0 ... 𝐽 ) ) → 𝐴 ∈ ℝ )
10 elfznn0 ( 𝑖 ∈ ( 0 ... 𝐽 ) → 𝑖 ∈ ℕ0 )
11 10 adantl ( ( 𝜑𝑖 ∈ ( 0 ... 𝐽 ) ) → 𝑖 ∈ ℕ0 )
12 1 2 7 8 9 11 knoppcnlem3 ( ( 𝜑𝑖 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝐹𝐴 ) ‘ 𝑖 ) ∈ ℝ )
13 6 12 fsumrecl ( 𝜑 → Σ 𝑖 ∈ ( 0 ... 𝐽 ) ( ( 𝐹𝐴 ) ‘ 𝑖 ) ∈ ℝ )