Step |
Hyp |
Ref |
Expression |
1 |
|
knoppndvlem5.t |
⊢ 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) ) |
2 |
|
knoppndvlem5.f |
⊢ 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶 ↑ 𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) ) |
3 |
|
knoppndvlem5.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
4 |
|
knoppndvlem5.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
5 |
|
knoppndvlem5.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
6 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝐽 ) ∈ Fin ) |
7 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝐽 ) ) → 𝑁 ∈ ℕ ) |
8 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝐽 ) ) → 𝐶 ∈ ℝ ) |
9 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝐽 ) ) → 𝐴 ∈ ℝ ) |
10 |
|
elfznn0 |
⊢ ( 𝑖 ∈ ( 0 ... 𝐽 ) → 𝑖 ∈ ℕ0 ) |
11 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝐽 ) ) → 𝑖 ∈ ℕ0 ) |
12 |
1 2 7 8 9 11
|
knoppcnlem3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ... 𝐽 ) ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ∈ ℝ ) |
13 |
6 12
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑖 ∈ ( 0 ... 𝐽 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑖 ) ∈ ℝ ) |