| Step |
Hyp |
Ref |
Expression |
| 1 |
|
knoppcnlem3.t |
⊢ 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) ) |
| 2 |
|
knoppcnlem3.f |
⊢ 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶 ↑ 𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) ) |
| 3 |
|
knoppcnlem3.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 4 |
|
knoppcnlem3.1 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 5 |
|
knoppcnlem3.2 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 6 |
|
knoppcnlem3.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 7 |
2 5 6
|
knoppcnlem1 |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑀 ) = ( ( 𝐶 ↑ 𝑀 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝐴 ) ) ) ) |
| 8 |
1 3 4 5 6
|
knoppcnlem2 |
⊢ ( 𝜑 → ( ( 𝐶 ↑ 𝑀 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝐴 ) ) ) ∈ ℝ ) |
| 9 |
7 8
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑀 ) ∈ ℝ ) |