Metamath Proof Explorer


Theorem knoppcnlem3

Description: Lemma for knoppcn . (Contributed by Asger C. Ipsen, 4-Apr-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppcnlem3.t 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) )
knoppcnlem3.f 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) )
knoppcnlem3.n ( 𝜑𝑁 ∈ ℕ )
knoppcnlem3.1 ( 𝜑𝐶 ∈ ℝ )
knoppcnlem3.2 ( 𝜑𝐴 ∈ ℝ )
knoppcnlem3.3 ( 𝜑𝑀 ∈ ℕ0 )
Assertion knoppcnlem3 ( 𝜑 → ( ( 𝐹𝐴 ) ‘ 𝑀 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 knoppcnlem3.t 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) )
2 knoppcnlem3.f 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) )
3 knoppcnlem3.n ( 𝜑𝑁 ∈ ℕ )
4 knoppcnlem3.1 ( 𝜑𝐶 ∈ ℝ )
5 knoppcnlem3.2 ( 𝜑𝐴 ∈ ℝ )
6 knoppcnlem3.3 ( 𝜑𝑀 ∈ ℕ0 )
7 2 5 6 knoppcnlem1 ( 𝜑 → ( ( 𝐹𝐴 ) ‘ 𝑀 ) = ( ( 𝐶𝑀 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝐴 ) ) ) )
8 1 3 4 5 6 knoppcnlem2 ( 𝜑 → ( ( 𝐶𝑀 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝐴 ) ) ) ∈ ℝ )
9 7 8 eqeltrd ( 𝜑 → ( ( 𝐹𝐴 ) ‘ 𝑀 ) ∈ ℝ )