| Step |
Hyp |
Ref |
Expression |
| 1 |
|
knoppcnlem2.t |
⊢ 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) ) |
| 2 |
|
knoppcnlem2.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 3 |
|
knoppcnlem2.1 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 4 |
|
knoppcnlem2.2 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 5 |
|
knoppcnlem2.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 6 |
3 5
|
reexpcld |
⊢ ( 𝜑 → ( 𝐶 ↑ 𝑀 ) ∈ ℝ ) |
| 7 |
|
2re |
⊢ 2 ∈ ℝ |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 9 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
| 10 |
2 9
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 11 |
8 10
|
remulcld |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℝ ) |
| 12 |
11 5
|
reexpcld |
⊢ ( 𝜑 → ( ( 2 · 𝑁 ) ↑ 𝑀 ) ∈ ℝ ) |
| 13 |
12 4
|
remulcld |
⊢ ( 𝜑 → ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝐴 ) ∈ ℝ ) |
| 14 |
1 13
|
dnicld2 |
⊢ ( 𝜑 → ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝐴 ) ) ∈ ℝ ) |
| 15 |
6 14
|
remulcld |
⊢ ( 𝜑 → ( ( 𝐶 ↑ 𝑀 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑀 ) · 𝐴 ) ) ) ∈ ℝ ) |