Metamath Proof Explorer


Theorem knoppcnlem2

Description: Lemma for knoppcn . (Contributed by Asger C. Ipsen, 4-Apr-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppcnlem2.t
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) )
knoppcnlem2.n
|- ( ph -> N e. NN )
knoppcnlem2.1
|- ( ph -> C e. RR )
knoppcnlem2.2
|- ( ph -> A e. RR )
knoppcnlem2.3
|- ( ph -> M e. NN0 )
Assertion knoppcnlem2
|- ( ph -> ( ( C ^ M ) x. ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) ) e. RR )

Proof

Step Hyp Ref Expression
1 knoppcnlem2.t
 |-  T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) )
2 knoppcnlem2.n
 |-  ( ph -> N e. NN )
3 knoppcnlem2.1
 |-  ( ph -> C e. RR )
4 knoppcnlem2.2
 |-  ( ph -> A e. RR )
5 knoppcnlem2.3
 |-  ( ph -> M e. NN0 )
6 3 5 reexpcld
 |-  ( ph -> ( C ^ M ) e. RR )
7 2re
 |-  2 e. RR
8 7 a1i
 |-  ( ph -> 2 e. RR )
9 nnre
 |-  ( N e. NN -> N e. RR )
10 2 9 syl
 |-  ( ph -> N e. RR )
11 8 10 remulcld
 |-  ( ph -> ( 2 x. N ) e. RR )
12 11 5 reexpcld
 |-  ( ph -> ( ( 2 x. N ) ^ M ) e. RR )
13 12 4 remulcld
 |-  ( ph -> ( ( ( 2 x. N ) ^ M ) x. A ) e. RR )
14 1 13 dnicld2
 |-  ( ph -> ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) e. RR )
15 6 14 remulcld
 |-  ( ph -> ( ( C ^ M ) x. ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) ) e. RR )