| Step |
Hyp |
Ref |
Expression |
| 1 |
|
knoppcnlem2.t |
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
| 2 |
|
knoppcnlem2.n |
|- ( ph -> N e. NN ) |
| 3 |
|
knoppcnlem2.1 |
|- ( ph -> C e. RR ) |
| 4 |
|
knoppcnlem2.2 |
|- ( ph -> A e. RR ) |
| 5 |
|
knoppcnlem2.3 |
|- ( ph -> M e. NN0 ) |
| 6 |
3 5
|
reexpcld |
|- ( ph -> ( C ^ M ) e. RR ) |
| 7 |
|
2re |
|- 2 e. RR |
| 8 |
7
|
a1i |
|- ( ph -> 2 e. RR ) |
| 9 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
| 10 |
2 9
|
syl |
|- ( ph -> N e. RR ) |
| 11 |
8 10
|
remulcld |
|- ( ph -> ( 2 x. N ) e. RR ) |
| 12 |
11 5
|
reexpcld |
|- ( ph -> ( ( 2 x. N ) ^ M ) e. RR ) |
| 13 |
12 4
|
remulcld |
|- ( ph -> ( ( ( 2 x. N ) ^ M ) x. A ) e. RR ) |
| 14 |
1 13
|
dnicld2 |
|- ( ph -> ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) e. RR ) |
| 15 |
6 14
|
remulcld |
|- ( ph -> ( ( C ^ M ) x. ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) ) e. RR ) |