Description: The continuous nowhere differentiable function W ( Knopp, K. (1918). Math. Z. 2, 1-26 ) is, in fact, continuous. (Contributed by Asger C. Ipsen, 4-Apr-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | knoppcn.t | |- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
|
knoppcn.f | |- F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) ) |
||
knoppcn.w | |- W = ( w e. RR |-> sum_ i e. NN0 ( ( F ` w ) ` i ) ) |
||
knoppcn.n | |- ( ph -> N e. NN ) |
||
knoppcn.1 | |- ( ph -> C e. RR ) |
||
knoppcn.2 | |- ( ph -> ( abs ` C ) < 1 ) |
||
Assertion | knoppcn | |- ( ph -> W e. ( RR -cn-> CC ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | knoppcn.t | |- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
|
2 | knoppcn.f | |- F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) ) |
|
3 | knoppcn.w | |- W = ( w e. RR |-> sum_ i e. NN0 ( ( F ` w ) ` i ) ) |
|
4 | knoppcn.n | |- ( ph -> N e. NN ) |
|
5 | knoppcn.1 | |- ( ph -> C e. RR ) |
|
6 | knoppcn.2 | |- ( ph -> ( abs ` C ) < 1 ) |
|
7 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
8 | 0zd | |- ( ph -> 0 e. ZZ ) |
|
9 | 1 2 4 5 | knoppcnlem11 | |- ( ph -> seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) : NN0 --> ( RR -cn-> CC ) ) |
10 | 1 2 3 4 5 6 | knoppcnlem9 | |- ( ph -> seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) W ) |
11 | 7 8 9 10 | ulmcn | |- ( ph -> W e. ( RR -cn-> CC ) ) |