Metamath Proof Explorer


Theorem knoppcn

Description: The continuous nowhere differentiable function W ( Knopp, K. (1918). Math. Z. 2, 1-26 ) is, in fact, continuous. (Contributed by Asger C. Ipsen, 4-Apr-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppcn.t
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) )
knoppcn.f
|- F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) )
knoppcn.w
|- W = ( w e. RR |-> sum_ i e. NN0 ( ( F ` w ) ` i ) )
knoppcn.n
|- ( ph -> N e. NN )
knoppcn.1
|- ( ph -> C e. RR )
knoppcn.2
|- ( ph -> ( abs ` C ) < 1 )
Assertion knoppcn
|- ( ph -> W e. ( RR -cn-> CC ) )

Proof

Step Hyp Ref Expression
1 knoppcn.t
 |-  T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) )
2 knoppcn.f
 |-  F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) )
3 knoppcn.w
 |-  W = ( w e. RR |-> sum_ i e. NN0 ( ( F ` w ) ` i ) )
4 knoppcn.n
 |-  ( ph -> N e. NN )
5 knoppcn.1
 |-  ( ph -> C e. RR )
6 knoppcn.2
 |-  ( ph -> ( abs ` C ) < 1 )
7 nn0uz
 |-  NN0 = ( ZZ>= ` 0 )
8 0zd
 |-  ( ph -> 0 e. ZZ )
9 1 2 4 5 knoppcnlem11
 |-  ( ph -> seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) : NN0 --> ( RR -cn-> CC ) )
10 1 2 3 4 5 6 knoppcnlem9
 |-  ( ph -> seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) W )
11 7 8 9 10 ulmcn
 |-  ( ph -> W e. ( RR -cn-> CC ) )