| Step |
Hyp |
Ref |
Expression |
| 1 |
|
knoppcnlem9.t |
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
| 2 |
|
knoppcnlem9.f |
|- F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) ) |
| 3 |
|
knoppcnlem9.w |
|- W = ( w e. RR |-> sum_ i e. NN0 ( ( F ` w ) ` i ) ) |
| 4 |
|
knoppcnlem9.n |
|- ( ph -> N e. NN ) |
| 5 |
|
knoppcnlem9.1 |
|- ( ph -> C e. RR ) |
| 6 |
|
knoppcnlem9.2 |
|- ( ph -> ( abs ` C ) < 1 ) |
| 7 |
1 2 4 5 6
|
knoppcnlem6 |
|- ( ph -> seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) e. dom ( ~~>u ` RR ) ) |
| 8 |
|
seqex |
|- seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) e. _V |
| 9 |
8
|
eldm |
|- ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) e. dom ( ~~>u ` RR ) <-> E. f seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) f ) |
| 10 |
7 9
|
sylib |
|- ( ph -> E. f seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) f ) |
| 11 |
|
simpr |
|- ( ( ph /\ seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) f ) -> seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) f ) |
| 12 |
|
ulmcl |
|- ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) f -> f : RR --> CC ) |
| 13 |
12
|
feqmptd |
|- ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) f -> f = ( w e. RR |-> ( f ` w ) ) ) |
| 14 |
13
|
adantl |
|- ( ( ph /\ seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) f ) -> f = ( w e. RR |-> ( f ` w ) ) ) |
| 15 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 16 |
|
0zd |
|- ( ( ( ph /\ seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) f ) /\ w e. RR ) -> 0 e. ZZ ) |
| 17 |
|
eqidd |
|- ( ( ( ( ph /\ seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) f ) /\ w e. RR ) /\ i e. NN0 ) -> ( ( F ` w ) ` i ) = ( ( F ` w ) ` i ) ) |
| 18 |
4
|
ad2antrr |
|- ( ( ( ph /\ w e. RR ) /\ i e. NN0 ) -> N e. NN ) |
| 19 |
5
|
ad2antrr |
|- ( ( ( ph /\ w e. RR ) /\ i e. NN0 ) -> C e. RR ) |
| 20 |
|
simplr |
|- ( ( ( ph /\ w e. RR ) /\ i e. NN0 ) -> w e. RR ) |
| 21 |
|
simpr |
|- ( ( ( ph /\ w e. RR ) /\ i e. NN0 ) -> i e. NN0 ) |
| 22 |
1 2 18 19 20 21
|
knoppcnlem3 |
|- ( ( ( ph /\ w e. RR ) /\ i e. NN0 ) -> ( ( F ` w ) ` i ) e. RR ) |
| 23 |
22
|
adantllr |
|- ( ( ( ( ph /\ seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) f ) /\ w e. RR ) /\ i e. NN0 ) -> ( ( F ` w ) ` i ) e. RR ) |
| 24 |
23
|
recnd |
|- ( ( ( ( ph /\ seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) f ) /\ w e. RR ) /\ i e. NN0 ) -> ( ( F ` w ) ` i ) e. CC ) |
| 25 |
1 2 4 5
|
knoppcnlem8 |
|- ( ph -> seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) : NN0 --> ( CC ^m RR ) ) |
| 26 |
25
|
ad2antrr |
|- ( ( ( ph /\ seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) f ) /\ w e. RR ) -> seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) : NN0 --> ( CC ^m RR ) ) |
| 27 |
|
simpr |
|- ( ( ( ph /\ seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) f ) /\ w e. RR ) -> w e. RR ) |
| 28 |
|
seqex |
|- seq 0 ( + , ( F ` w ) ) e. _V |
| 29 |
28
|
a1i |
|- ( ( ( ph /\ seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) f ) /\ w e. RR ) -> seq 0 ( + , ( F ` w ) ) e. _V ) |
| 30 |
4
|
ad2antrr |
|- ( ( ( ph /\ w e. RR ) /\ k e. NN0 ) -> N e. NN ) |
| 31 |
5
|
ad2antrr |
|- ( ( ( ph /\ w e. RR ) /\ k e. NN0 ) -> C e. RR ) |
| 32 |
|
simpr |
|- ( ( ( ph /\ w e. RR ) /\ k e. NN0 ) -> k e. NN0 ) |
| 33 |
1 2 30 31 32
|
knoppcnlem7 |
|- ( ( ( ph /\ w e. RR ) /\ k e. NN0 ) -> ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ` k ) = ( v e. RR |-> ( seq 0 ( + , ( F ` v ) ) ` k ) ) ) |
| 34 |
33
|
adantllr |
|- ( ( ( ( ph /\ seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) f ) /\ w e. RR ) /\ k e. NN0 ) -> ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ` k ) = ( v e. RR |-> ( seq 0 ( + , ( F ` v ) ) ` k ) ) ) |
| 35 |
34
|
fveq1d |
|- ( ( ( ( ph /\ seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) f ) /\ w e. RR ) /\ k e. NN0 ) -> ( ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ` k ) ` w ) = ( ( v e. RR |-> ( seq 0 ( + , ( F ` v ) ) ` k ) ) ` w ) ) |
| 36 |
|
eqid |
|- ( v e. RR |-> ( seq 0 ( + , ( F ` v ) ) ` k ) ) = ( v e. RR |-> ( seq 0 ( + , ( F ` v ) ) ` k ) ) |
| 37 |
|
fveq2 |
|- ( v = w -> ( F ` v ) = ( F ` w ) ) |
| 38 |
37
|
seqeq3d |
|- ( v = w -> seq 0 ( + , ( F ` v ) ) = seq 0 ( + , ( F ` w ) ) ) |
| 39 |
38
|
fveq1d |
|- ( v = w -> ( seq 0 ( + , ( F ` v ) ) ` k ) = ( seq 0 ( + , ( F ` w ) ) ` k ) ) |
| 40 |
27
|
adantr |
|- ( ( ( ( ph /\ seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) f ) /\ w e. RR ) /\ k e. NN0 ) -> w e. RR ) |
| 41 |
|
fvexd |
|- ( ( ( ( ph /\ seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) f ) /\ w e. RR ) /\ k e. NN0 ) -> ( seq 0 ( + , ( F ` w ) ) ` k ) e. _V ) |
| 42 |
36 39 40 41
|
fvmptd3 |
|- ( ( ( ( ph /\ seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) f ) /\ w e. RR ) /\ k e. NN0 ) -> ( ( v e. RR |-> ( seq 0 ( + , ( F ` v ) ) ` k ) ) ` w ) = ( seq 0 ( + , ( F ` w ) ) ` k ) ) |
| 43 |
35 42
|
eqtrd |
|- ( ( ( ( ph /\ seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) f ) /\ w e. RR ) /\ k e. NN0 ) -> ( ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ` k ) ` w ) = ( seq 0 ( + , ( F ` w ) ) ` k ) ) |
| 44 |
|
simplr |
|- ( ( ( ph /\ seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) f ) /\ w e. RR ) -> seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) f ) |
| 45 |
15 16 26 27 29 43 44
|
ulmclm |
|- ( ( ( ph /\ seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) f ) /\ w e. RR ) -> seq 0 ( + , ( F ` w ) ) ~~> ( f ` w ) ) |
| 46 |
15 16 17 24 45
|
isumclim |
|- ( ( ( ph /\ seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) f ) /\ w e. RR ) -> sum_ i e. NN0 ( ( F ` w ) ` i ) = ( f ` w ) ) |
| 47 |
46
|
eqcomd |
|- ( ( ( ph /\ seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) f ) /\ w e. RR ) -> ( f ` w ) = sum_ i e. NN0 ( ( F ` w ) ` i ) ) |
| 48 |
47
|
mpteq2dva |
|- ( ( ph /\ seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) f ) -> ( w e. RR |-> ( f ` w ) ) = ( w e. RR |-> sum_ i e. NN0 ( ( F ` w ) ` i ) ) ) |
| 49 |
3
|
a1i |
|- ( ( ph /\ seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) f ) -> W = ( w e. RR |-> sum_ i e. NN0 ( ( F ` w ) ` i ) ) ) |
| 50 |
49
|
eqcomd |
|- ( ( ph /\ seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) f ) -> ( w e. RR |-> sum_ i e. NN0 ( ( F ` w ) ` i ) ) = W ) |
| 51 |
14 48 50
|
3eqtrd |
|- ( ( ph /\ seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) f ) -> f = W ) |
| 52 |
11 51
|
breqtrd |
|- ( ( ph /\ seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) f ) -> seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) W ) |
| 53 |
52
|
ex |
|- ( ph -> ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) f -> seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) W ) ) |
| 54 |
53
|
exlimdv |
|- ( ph -> ( E. f seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) f -> seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) W ) ) |
| 55 |
10 54
|
mpd |
|- ( ph -> seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ( ~~>u ` RR ) W ) |