Description: Lemma for knoppcn . (Contributed by Asger C. Ipsen, 4-Apr-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | knoppcnlem9.t | |
|
knoppcnlem9.f | |
||
knoppcnlem9.w | |
||
knoppcnlem9.n | |
||
knoppcnlem9.1 | |
||
knoppcnlem9.2 | |
||
Assertion | knoppcnlem9 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | knoppcnlem9.t | |
|
2 | knoppcnlem9.f | |
|
3 | knoppcnlem9.w | |
|
4 | knoppcnlem9.n | |
|
5 | knoppcnlem9.1 | |
|
6 | knoppcnlem9.2 | |
|
7 | 1 2 4 5 6 | knoppcnlem6 | |
8 | seqex | |
|
9 | 8 | eldm | |
10 | 7 9 | sylib | |
11 | simpr | |
|
12 | ulmcl | |
|
13 | 12 | feqmptd | |
14 | 13 | adantl | |
15 | nn0uz | |
|
16 | 0zd | |
|
17 | eqidd | |
|
18 | 4 | ad2antrr | |
19 | 5 | ad2antrr | |
20 | simplr | |
|
21 | simpr | |
|
22 | 1 2 18 19 20 21 | knoppcnlem3 | |
23 | 22 | adantllr | |
24 | 23 | recnd | |
25 | 1 2 4 5 | knoppcnlem8 | |
26 | 25 | ad2antrr | |
27 | simpr | |
|
28 | seqex | |
|
29 | 28 | a1i | |
30 | 4 | ad2antrr | |
31 | 5 | ad2antrr | |
32 | simpr | |
|
33 | 1 2 30 31 32 | knoppcnlem7 | |
34 | 33 | adantllr | |
35 | 34 | fveq1d | |
36 | eqid | |
|
37 | fveq2 | |
|
38 | 37 | seqeq3d | |
39 | 38 | fveq1d | |
40 | 27 | adantr | |
41 | fvexd | |
|
42 | 36 39 40 41 | fvmptd3 | |
43 | 35 42 | eqtrd | |
44 | simplr | |
|
45 | 15 16 26 27 29 43 44 | ulmclm | |
46 | 15 16 17 24 45 | isumclim | |
47 | 46 | eqcomd | |
48 | 47 | mpteq2dva | |
49 | 3 | a1i | |
50 | 49 | eqcomd | |
51 | 14 48 50 | 3eqtrd | |
52 | 11 51 | breqtrd | |
53 | 52 | ex | |
54 | 53 | exlimdv | |
55 | 10 54 | mpd | |