Metamath Proof Explorer


Theorem knoppcnlem9

Description: Lemma for knoppcn . (Contributed by Asger C. Ipsen, 4-Apr-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppcnlem9.t T = x x + 1 2 x
knoppcnlem9.f F = y n 0 C n T 2 N n y
knoppcnlem9.w W = w i 0 F w i
knoppcnlem9.n φ N
knoppcnlem9.1 φ C
knoppcnlem9.2 φ C < 1
Assertion knoppcnlem9 φ seq 0 f + m 0 z F z m u W

Proof

Step Hyp Ref Expression
1 knoppcnlem9.t T = x x + 1 2 x
2 knoppcnlem9.f F = y n 0 C n T 2 N n y
3 knoppcnlem9.w W = w i 0 F w i
4 knoppcnlem9.n φ N
5 knoppcnlem9.1 φ C
6 knoppcnlem9.2 φ C < 1
7 1 2 4 5 6 knoppcnlem6 φ seq 0 f + m 0 z F z m dom u
8 seqex seq 0 f + m 0 z F z m V
9 8 eldm seq 0 f + m 0 z F z m dom u f seq 0 f + m 0 z F z m u f
10 7 9 sylib φ f seq 0 f + m 0 z F z m u f
11 simpr φ seq 0 f + m 0 z F z m u f seq 0 f + m 0 z F z m u f
12 ulmcl seq 0 f + m 0 z F z m u f f :
13 12 feqmptd seq 0 f + m 0 z F z m u f f = w f w
14 13 adantl φ seq 0 f + m 0 z F z m u f f = w f w
15 nn0uz 0 = 0
16 0zd φ seq 0 f + m 0 z F z m u f w 0
17 eqidd φ seq 0 f + m 0 z F z m u f w i 0 F w i = F w i
18 4 ad2antrr φ w i 0 N
19 5 ad2antrr φ w i 0 C
20 simplr φ w i 0 w
21 simpr φ w i 0 i 0
22 1 2 18 19 20 21 knoppcnlem3 φ w i 0 F w i
23 22 adantllr φ seq 0 f + m 0 z F z m u f w i 0 F w i
24 23 recnd φ seq 0 f + m 0 z F z m u f w i 0 F w i
25 1 2 4 5 knoppcnlem8 φ seq 0 f + m 0 z F z m : 0
26 25 ad2antrr φ seq 0 f + m 0 z F z m u f w seq 0 f + m 0 z F z m : 0
27 simpr φ seq 0 f + m 0 z F z m u f w w
28 seqex seq 0 + F w V
29 28 a1i φ seq 0 f + m 0 z F z m u f w seq 0 + F w V
30 4 ad2antrr φ w k 0 N
31 5 ad2antrr φ w k 0 C
32 simpr φ w k 0 k 0
33 1 2 30 31 32 knoppcnlem7 φ w k 0 seq 0 f + m 0 z F z m k = v seq 0 + F v k
34 33 adantllr φ seq 0 f + m 0 z F z m u f w k 0 seq 0 f + m 0 z F z m k = v seq 0 + F v k
35 34 fveq1d φ seq 0 f + m 0 z F z m u f w k 0 seq 0 f + m 0 z F z m k w = v seq 0 + F v k w
36 eqid v seq 0 + F v k = v seq 0 + F v k
37 fveq2 v = w F v = F w
38 37 seqeq3d v = w seq 0 + F v = seq 0 + F w
39 38 fveq1d v = w seq 0 + F v k = seq 0 + F w k
40 27 adantr φ seq 0 f + m 0 z F z m u f w k 0 w
41 fvexd φ seq 0 f + m 0 z F z m u f w k 0 seq 0 + F w k V
42 36 39 40 41 fvmptd3 φ seq 0 f + m 0 z F z m u f w k 0 v seq 0 + F v k w = seq 0 + F w k
43 35 42 eqtrd φ seq 0 f + m 0 z F z m u f w k 0 seq 0 f + m 0 z F z m k w = seq 0 + F w k
44 simplr φ seq 0 f + m 0 z F z m u f w seq 0 f + m 0 z F z m u f
45 15 16 26 27 29 43 44 ulmclm φ seq 0 f + m 0 z F z m u f w seq 0 + F w f w
46 15 16 17 24 45 isumclim φ seq 0 f + m 0 z F z m u f w i 0 F w i = f w
47 46 eqcomd φ seq 0 f + m 0 z F z m u f w f w = i 0 F w i
48 47 mpteq2dva φ seq 0 f + m 0 z F z m u f w f w = w i 0 F w i
49 3 a1i φ seq 0 f + m 0 z F z m u f W = w i 0 F w i
50 49 eqcomd φ seq 0 f + m 0 z F z m u f w i 0 F w i = W
51 14 48 50 3eqtrd φ seq 0 f + m 0 z F z m u f f = W
52 11 51 breqtrd φ seq 0 f + m 0 z F z m u f seq 0 f + m 0 z F z m u W
53 52 ex φ seq 0 f + m 0 z F z m u f seq 0 f + m 0 z F z m u W
54 53 exlimdv φ f seq 0 f + m 0 z F z m u f seq 0 f + m 0 z F z m u W
55 10 54 mpd φ seq 0 f + m 0 z F z m u W