Metamath Proof Explorer


Theorem knoppcnlem8

Description: Lemma for knoppcn . (Contributed by Asger C. Ipsen, 4-Apr-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppcnlem8.t T = x x + 1 2 x
knoppcnlem8.f F = y n 0 C n T 2 N n y
knoppcnlem8.n φ N
knoppcnlem8.1 φ C
Assertion knoppcnlem8 φ seq 0 f + m 0 z F z m : 0

Proof

Step Hyp Ref Expression
1 knoppcnlem8.t T = x x + 1 2 x
2 knoppcnlem8.f F = y n 0 C n T 2 N n y
3 knoppcnlem8.n φ N
4 knoppcnlem8.1 φ C
5 3 adantr φ k 0 N
6 4 adantr φ k 0 C
7 simpr φ k 0 k 0
8 1 2 5 6 7 knoppcnlem7 φ k 0 seq 0 f + m 0 z F z m k = w seq 0 + F w k
9 simplr φ k 0 w k 0
10 nn0uz 0 = 0
11 9 10 eleqtrdi φ k 0 w k 0
12 5 ad2antrr φ k 0 w a 0 k N
13 6 ad2antrr φ k 0 w a 0 k C
14 simplr φ k 0 w a 0 k w
15 elfznn0 a 0 k a 0
16 15 adantl φ k 0 w a 0 k a 0
17 1 2 12 13 14 16 knoppcnlem3 φ k 0 w a 0 k F w a
18 17 recnd φ k 0 w a 0 k F w a
19 addcl a b a + b
20 19 adantl φ k 0 w a b a + b
21 11 18 20 seqcl φ k 0 w seq 0 + F w k
22 21 fmpttd φ k 0 w seq 0 + F w k :
23 cnex V
24 reex V
25 23 24 pm3.2i V V
26 elmapg V V w seq 0 + F w k w seq 0 + F w k :
27 25 26 ax-mp w seq 0 + F w k w seq 0 + F w k :
28 22 27 sylibr φ k 0 w seq 0 + F w k
29 8 28 eqeltrd φ k 0 seq 0 f + m 0 z F z m k
30 29 fmpttd φ k 0 seq 0 f + m 0 z F z m k : 0
31 0z 0
32 seqfn 0 seq 0 f + m 0 z F z m Fn 0
33 31 32 ax-mp seq 0 f + m 0 z F z m Fn 0
34 10 fneq2i seq 0 f + m 0 z F z m Fn 0 seq 0 f + m 0 z F z m Fn 0
35 33 34 mpbir seq 0 f + m 0 z F z m Fn 0
36 dffn5 seq 0 f + m 0 z F z m Fn 0 seq 0 f + m 0 z F z m = k 0 seq 0 f + m 0 z F z m k
37 35 36 mpbi seq 0 f + m 0 z F z m = k 0 seq 0 f + m 0 z F z m k
38 37 feq1i seq 0 f + m 0 z F z m : 0 k 0 seq 0 f + m 0 z F z m k : 0
39 30 38 sylibr φ seq 0 f + m 0 z F z m : 0