Step |
Hyp |
Ref |
Expression |
1 |
|
knoppcnlem8.t |
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
2 |
|
knoppcnlem8.f |
|- F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) ) |
3 |
|
knoppcnlem8.n |
|- ( ph -> N e. NN ) |
4 |
|
knoppcnlem8.1 |
|- ( ph -> C e. RR ) |
5 |
3
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> N e. NN ) |
6 |
4
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> C e. RR ) |
7 |
|
simpr |
|- ( ( ph /\ k e. NN0 ) -> k e. NN0 ) |
8 |
1 2 5 6 7
|
knoppcnlem7 |
|- ( ( ph /\ k e. NN0 ) -> ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ` k ) = ( w e. RR |-> ( seq 0 ( + , ( F ` w ) ) ` k ) ) ) |
9 |
|
simplr |
|- ( ( ( ph /\ k e. NN0 ) /\ w e. RR ) -> k e. NN0 ) |
10 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
11 |
9 10
|
eleqtrdi |
|- ( ( ( ph /\ k e. NN0 ) /\ w e. RR ) -> k e. ( ZZ>= ` 0 ) ) |
12 |
5
|
ad2antrr |
|- ( ( ( ( ph /\ k e. NN0 ) /\ w e. RR ) /\ a e. ( 0 ... k ) ) -> N e. NN ) |
13 |
6
|
ad2antrr |
|- ( ( ( ( ph /\ k e. NN0 ) /\ w e. RR ) /\ a e. ( 0 ... k ) ) -> C e. RR ) |
14 |
|
simplr |
|- ( ( ( ( ph /\ k e. NN0 ) /\ w e. RR ) /\ a e. ( 0 ... k ) ) -> w e. RR ) |
15 |
|
elfznn0 |
|- ( a e. ( 0 ... k ) -> a e. NN0 ) |
16 |
15
|
adantl |
|- ( ( ( ( ph /\ k e. NN0 ) /\ w e. RR ) /\ a e. ( 0 ... k ) ) -> a e. NN0 ) |
17 |
1 2 12 13 14 16
|
knoppcnlem3 |
|- ( ( ( ( ph /\ k e. NN0 ) /\ w e. RR ) /\ a e. ( 0 ... k ) ) -> ( ( F ` w ) ` a ) e. RR ) |
18 |
17
|
recnd |
|- ( ( ( ( ph /\ k e. NN0 ) /\ w e. RR ) /\ a e. ( 0 ... k ) ) -> ( ( F ` w ) ` a ) e. CC ) |
19 |
|
addcl |
|- ( ( a e. CC /\ b e. CC ) -> ( a + b ) e. CC ) |
20 |
19
|
adantl |
|- ( ( ( ( ph /\ k e. NN0 ) /\ w e. RR ) /\ ( a e. CC /\ b e. CC ) ) -> ( a + b ) e. CC ) |
21 |
11 18 20
|
seqcl |
|- ( ( ( ph /\ k e. NN0 ) /\ w e. RR ) -> ( seq 0 ( + , ( F ` w ) ) ` k ) e. CC ) |
22 |
21
|
fmpttd |
|- ( ( ph /\ k e. NN0 ) -> ( w e. RR |-> ( seq 0 ( + , ( F ` w ) ) ` k ) ) : RR --> CC ) |
23 |
|
cnex |
|- CC e. _V |
24 |
|
reex |
|- RR e. _V |
25 |
23 24
|
pm3.2i |
|- ( CC e. _V /\ RR e. _V ) |
26 |
|
elmapg |
|- ( ( CC e. _V /\ RR e. _V ) -> ( ( w e. RR |-> ( seq 0 ( + , ( F ` w ) ) ` k ) ) e. ( CC ^m RR ) <-> ( w e. RR |-> ( seq 0 ( + , ( F ` w ) ) ` k ) ) : RR --> CC ) ) |
27 |
25 26
|
ax-mp |
|- ( ( w e. RR |-> ( seq 0 ( + , ( F ` w ) ) ` k ) ) e. ( CC ^m RR ) <-> ( w e. RR |-> ( seq 0 ( + , ( F ` w ) ) ` k ) ) : RR --> CC ) |
28 |
22 27
|
sylibr |
|- ( ( ph /\ k e. NN0 ) -> ( w e. RR |-> ( seq 0 ( + , ( F ` w ) ) ` k ) ) e. ( CC ^m RR ) ) |
29 |
8 28
|
eqeltrd |
|- ( ( ph /\ k e. NN0 ) -> ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ` k ) e. ( CC ^m RR ) ) |
30 |
29
|
fmpttd |
|- ( ph -> ( k e. NN0 |-> ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ` k ) ) : NN0 --> ( CC ^m RR ) ) |
31 |
|
0z |
|- 0 e. ZZ |
32 |
|
seqfn |
|- ( 0 e. ZZ -> seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) Fn ( ZZ>= ` 0 ) ) |
33 |
31 32
|
ax-mp |
|- seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) Fn ( ZZ>= ` 0 ) |
34 |
10
|
fneq2i |
|- ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) Fn NN0 <-> seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) Fn ( ZZ>= ` 0 ) ) |
35 |
33 34
|
mpbir |
|- seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) Fn NN0 |
36 |
|
dffn5 |
|- ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) Fn NN0 <-> seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) = ( k e. NN0 |-> ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ` k ) ) ) |
37 |
35 36
|
mpbi |
|- seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) = ( k e. NN0 |-> ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ` k ) ) |
38 |
37
|
feq1i |
|- ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) : NN0 --> ( CC ^m RR ) <-> ( k e. NN0 |-> ( seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) ` k ) ) : NN0 --> ( CC ^m RR ) ) |
39 |
30 38
|
sylibr |
|- ( ph -> seq 0 ( oF + , ( m e. NN0 |-> ( z e. RR |-> ( ( F ` z ) ` m ) ) ) ) : NN0 --> ( CC ^m RR ) ) |