Description: Lemma for knoppcn . (Contributed by Asger C. Ipsen, 4-Apr-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | knoppcnlem3.t | |- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
|
knoppcnlem3.f | |- F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) ) |
||
knoppcnlem3.n | |- ( ph -> N e. NN ) |
||
knoppcnlem3.1 | |- ( ph -> C e. RR ) |
||
knoppcnlem3.2 | |- ( ph -> A e. RR ) |
||
knoppcnlem3.3 | |- ( ph -> M e. NN0 ) |
||
Assertion | knoppcnlem3 | |- ( ph -> ( ( F ` A ) ` M ) e. RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | knoppcnlem3.t | |- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
|
2 | knoppcnlem3.f | |- F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) ) |
|
3 | knoppcnlem3.n | |- ( ph -> N e. NN ) |
|
4 | knoppcnlem3.1 | |- ( ph -> C e. RR ) |
|
5 | knoppcnlem3.2 | |- ( ph -> A e. RR ) |
|
6 | knoppcnlem3.3 | |- ( ph -> M e. NN0 ) |
|
7 | 2 5 6 | knoppcnlem1 | |- ( ph -> ( ( F ` A ) ` M ) = ( ( C ^ M ) x. ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) ) ) |
8 | 1 3 4 5 6 | knoppcnlem2 | |- ( ph -> ( ( C ^ M ) x. ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) ) e. RR ) |
9 | 7 8 | eqeltrd | |- ( ph -> ( ( F ` A ) ` M ) e. RR ) |