Metamath Proof Explorer


Theorem knoppcnlem3

Description: Lemma for knoppcn . (Contributed by Asger C. Ipsen, 4-Apr-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppcnlem3.t
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) )
knoppcnlem3.f
|- F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) )
knoppcnlem3.n
|- ( ph -> N e. NN )
knoppcnlem3.1
|- ( ph -> C e. RR )
knoppcnlem3.2
|- ( ph -> A e. RR )
knoppcnlem3.3
|- ( ph -> M e. NN0 )
Assertion knoppcnlem3
|- ( ph -> ( ( F ` A ) ` M ) e. RR )

Proof

Step Hyp Ref Expression
1 knoppcnlem3.t
 |-  T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) )
2 knoppcnlem3.f
 |-  F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) )
3 knoppcnlem3.n
 |-  ( ph -> N e. NN )
4 knoppcnlem3.1
 |-  ( ph -> C e. RR )
5 knoppcnlem3.2
 |-  ( ph -> A e. RR )
6 knoppcnlem3.3
 |-  ( ph -> M e. NN0 )
7 2 5 6 knoppcnlem1
 |-  ( ph -> ( ( F ` A ) ` M ) = ( ( C ^ M ) x. ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) ) )
8 1 3 4 5 6 knoppcnlem2
 |-  ( ph -> ( ( C ^ M ) x. ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) ) e. RR )
9 7 8 eqeltrd
 |-  ( ph -> ( ( F ` A ) ` M ) e. RR )