| Step |
Hyp |
Ref |
Expression |
| 1 |
|
knoppcnlem4.t |
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
| 2 |
|
knoppcnlem4.f |
|- F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) ) |
| 3 |
|
knoppcnlem4.n |
|- ( ph -> N e. NN ) |
| 4 |
|
knoppcnlem4.1 |
|- ( ph -> C e. RR ) |
| 5 |
|
knoppcnlem4.2 |
|- ( ph -> A e. RR ) |
| 6 |
|
knoppcnlem4.3 |
|- ( ph -> M e. NN0 ) |
| 7 |
2 5 6
|
knoppcnlem1 |
|- ( ph -> ( ( F ` A ) ` M ) = ( ( C ^ M ) x. ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) ) ) |
| 8 |
7
|
fveq2d |
|- ( ph -> ( abs ` ( ( F ` A ) ` M ) ) = ( abs ` ( ( C ^ M ) x. ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) ) ) ) |
| 9 |
4
|
recnd |
|- ( ph -> C e. CC ) |
| 10 |
9 6
|
expcld |
|- ( ph -> ( C ^ M ) e. CC ) |
| 11 |
|
2re |
|- 2 e. RR |
| 12 |
11
|
a1i |
|- ( ph -> 2 e. RR ) |
| 13 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
| 14 |
3 13
|
syl |
|- ( ph -> N e. RR ) |
| 15 |
12 14
|
remulcld |
|- ( ph -> ( 2 x. N ) e. RR ) |
| 16 |
15 6
|
reexpcld |
|- ( ph -> ( ( 2 x. N ) ^ M ) e. RR ) |
| 17 |
16 5
|
remulcld |
|- ( ph -> ( ( ( 2 x. N ) ^ M ) x. A ) e. RR ) |
| 18 |
1 17
|
dnicld2 |
|- ( ph -> ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) e. RR ) |
| 19 |
18
|
recnd |
|- ( ph -> ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) e. CC ) |
| 20 |
10 19
|
absmuld |
|- ( ph -> ( abs ` ( ( C ^ M ) x. ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) ) ) = ( ( abs ` ( C ^ M ) ) x. ( abs ` ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) ) ) ) |
| 21 |
9 6
|
absexpd |
|- ( ph -> ( abs ` ( C ^ M ) ) = ( ( abs ` C ) ^ M ) ) |
| 22 |
21
|
oveq1d |
|- ( ph -> ( ( abs ` ( C ^ M ) ) x. ( abs ` ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) ) ) = ( ( ( abs ` C ) ^ M ) x. ( abs ` ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) ) ) ) |
| 23 |
20 22
|
eqtrd |
|- ( ph -> ( abs ` ( ( C ^ M ) x. ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) ) ) = ( ( ( abs ` C ) ^ M ) x. ( abs ` ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) ) ) ) |
| 24 |
19
|
abscld |
|- ( ph -> ( abs ` ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) ) e. RR ) |
| 25 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 26 |
9
|
abscld |
|- ( ph -> ( abs ` C ) e. RR ) |
| 27 |
26 6
|
reexpcld |
|- ( ph -> ( ( abs ` C ) ^ M ) e. RR ) |
| 28 |
9
|
absge0d |
|- ( ph -> 0 <_ ( abs ` C ) ) |
| 29 |
26 6 28
|
expge0d |
|- ( ph -> 0 <_ ( ( abs ` C ) ^ M ) ) |
| 30 |
1
|
dnival |
|- ( ( ( ( 2 x. N ) ^ M ) x. A ) e. RR -> ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) = ( abs ` ( ( |_ ` ( ( ( ( 2 x. N ) ^ M ) x. A ) + ( 1 / 2 ) ) ) - ( ( ( 2 x. N ) ^ M ) x. A ) ) ) ) |
| 31 |
17 30
|
syl |
|- ( ph -> ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) = ( abs ` ( ( |_ ` ( ( ( ( 2 x. N ) ^ M ) x. A ) + ( 1 / 2 ) ) ) - ( ( ( 2 x. N ) ^ M ) x. A ) ) ) ) |
| 32 |
31
|
fveq2d |
|- ( ph -> ( abs ` ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) ) = ( abs ` ( abs ` ( ( |_ ` ( ( ( ( 2 x. N ) ^ M ) x. A ) + ( 1 / 2 ) ) ) - ( ( ( 2 x. N ) ^ M ) x. A ) ) ) ) ) |
| 33 |
|
halfre |
|- ( 1 / 2 ) e. RR |
| 34 |
33
|
a1i |
|- ( ph -> ( 1 / 2 ) e. RR ) |
| 35 |
17 34
|
readdcld |
|- ( ph -> ( ( ( ( 2 x. N ) ^ M ) x. A ) + ( 1 / 2 ) ) e. RR ) |
| 36 |
|
reflcl |
|- ( ( ( ( ( 2 x. N ) ^ M ) x. A ) + ( 1 / 2 ) ) e. RR -> ( |_ ` ( ( ( ( 2 x. N ) ^ M ) x. A ) + ( 1 / 2 ) ) ) e. RR ) |
| 37 |
35 36
|
syl |
|- ( ph -> ( |_ ` ( ( ( ( 2 x. N ) ^ M ) x. A ) + ( 1 / 2 ) ) ) e. RR ) |
| 38 |
37 17
|
resubcld |
|- ( ph -> ( ( |_ ` ( ( ( ( 2 x. N ) ^ M ) x. A ) + ( 1 / 2 ) ) ) - ( ( ( 2 x. N ) ^ M ) x. A ) ) e. RR ) |
| 39 |
38
|
recnd |
|- ( ph -> ( ( |_ ` ( ( ( ( 2 x. N ) ^ M ) x. A ) + ( 1 / 2 ) ) ) - ( ( ( 2 x. N ) ^ M ) x. A ) ) e. CC ) |
| 40 |
|
absidm |
|- ( ( ( |_ ` ( ( ( ( 2 x. N ) ^ M ) x. A ) + ( 1 / 2 ) ) ) - ( ( ( 2 x. N ) ^ M ) x. A ) ) e. CC -> ( abs ` ( abs ` ( ( |_ ` ( ( ( ( 2 x. N ) ^ M ) x. A ) + ( 1 / 2 ) ) ) - ( ( ( 2 x. N ) ^ M ) x. A ) ) ) ) = ( abs ` ( ( |_ ` ( ( ( ( 2 x. N ) ^ M ) x. A ) + ( 1 / 2 ) ) ) - ( ( ( 2 x. N ) ^ M ) x. A ) ) ) ) |
| 41 |
39 40
|
syl |
|- ( ph -> ( abs ` ( abs ` ( ( |_ ` ( ( ( ( 2 x. N ) ^ M ) x. A ) + ( 1 / 2 ) ) ) - ( ( ( 2 x. N ) ^ M ) x. A ) ) ) ) = ( abs ` ( ( |_ ` ( ( ( ( 2 x. N ) ^ M ) x. A ) + ( 1 / 2 ) ) ) - ( ( ( 2 x. N ) ^ M ) x. A ) ) ) ) |
| 42 |
32 41
|
eqtrd |
|- ( ph -> ( abs ` ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) ) = ( abs ` ( ( |_ ` ( ( ( ( 2 x. N ) ^ M ) x. A ) + ( 1 / 2 ) ) ) - ( ( ( 2 x. N ) ^ M ) x. A ) ) ) ) |
| 43 |
31 18
|
eqeltrrd |
|- ( ph -> ( abs ` ( ( |_ ` ( ( ( ( 2 x. N ) ^ M ) x. A ) + ( 1 / 2 ) ) ) - ( ( ( 2 x. N ) ^ M ) x. A ) ) ) e. RR ) |
| 44 |
|
rddif |
|- ( ( ( ( 2 x. N ) ^ M ) x. A ) e. RR -> ( abs ` ( ( |_ ` ( ( ( ( 2 x. N ) ^ M ) x. A ) + ( 1 / 2 ) ) ) - ( ( ( 2 x. N ) ^ M ) x. A ) ) ) <_ ( 1 / 2 ) ) |
| 45 |
17 44
|
syl |
|- ( ph -> ( abs ` ( ( |_ ` ( ( ( ( 2 x. N ) ^ M ) x. A ) + ( 1 / 2 ) ) ) - ( ( ( 2 x. N ) ^ M ) x. A ) ) ) <_ ( 1 / 2 ) ) |
| 46 |
|
halflt1 |
|- ( 1 / 2 ) < 1 |
| 47 |
|
1re |
|- 1 e. RR |
| 48 |
33 47
|
ltlei |
|- ( ( 1 / 2 ) < 1 -> ( 1 / 2 ) <_ 1 ) |
| 49 |
46 48
|
ax-mp |
|- ( 1 / 2 ) <_ 1 |
| 50 |
49
|
a1i |
|- ( ph -> ( 1 / 2 ) <_ 1 ) |
| 51 |
43 34 25 45 50
|
letrd |
|- ( ph -> ( abs ` ( ( |_ ` ( ( ( ( 2 x. N ) ^ M ) x. A ) + ( 1 / 2 ) ) ) - ( ( ( 2 x. N ) ^ M ) x. A ) ) ) <_ 1 ) |
| 52 |
42 51
|
eqbrtrd |
|- ( ph -> ( abs ` ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) ) <_ 1 ) |
| 53 |
24 25 27 29 52
|
lemul2ad |
|- ( ph -> ( ( ( abs ` C ) ^ M ) x. ( abs ` ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) ) ) <_ ( ( ( abs ` C ) ^ M ) x. 1 ) ) |
| 54 |
|
ax-1rid |
|- ( ( ( abs ` C ) ^ M ) e. RR -> ( ( ( abs ` C ) ^ M ) x. 1 ) = ( ( abs ` C ) ^ M ) ) |
| 55 |
27 54
|
syl |
|- ( ph -> ( ( ( abs ` C ) ^ M ) x. 1 ) = ( ( abs ` C ) ^ M ) ) |
| 56 |
53 55
|
breqtrd |
|- ( ph -> ( ( ( abs ` C ) ^ M ) x. ( abs ` ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) ) ) <_ ( ( abs ` C ) ^ M ) ) |
| 57 |
23 56
|
eqbrtrd |
|- ( ph -> ( abs ` ( ( C ^ M ) x. ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) ) ) <_ ( ( abs ` C ) ^ M ) ) |
| 58 |
|
eqidd |
|- ( ph -> ( m e. NN0 |-> ( ( abs ` C ) ^ m ) ) = ( m e. NN0 |-> ( ( abs ` C ) ^ m ) ) ) |
| 59 |
|
oveq2 |
|- ( m = M -> ( ( abs ` C ) ^ m ) = ( ( abs ` C ) ^ M ) ) |
| 60 |
59
|
adantl |
|- ( ( ph /\ m = M ) -> ( ( abs ` C ) ^ m ) = ( ( abs ` C ) ^ M ) ) |
| 61 |
58 60 6 27
|
fvmptd |
|- ( ph -> ( ( m e. NN0 |-> ( ( abs ` C ) ^ m ) ) ` M ) = ( ( abs ` C ) ^ M ) ) |
| 62 |
61
|
eqcomd |
|- ( ph -> ( ( abs ` C ) ^ M ) = ( ( m e. NN0 |-> ( ( abs ` C ) ^ m ) ) ` M ) ) |
| 63 |
57 62
|
breqtrd |
|- ( ph -> ( abs ` ( ( C ^ M ) x. ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) ) ) <_ ( ( m e. NN0 |-> ( ( abs ` C ) ^ m ) ) ` M ) ) |
| 64 |
8 63
|
eqbrtrd |
|- ( ph -> ( abs ` ( ( F ` A ) ` M ) ) <_ ( ( m e. NN0 |-> ( ( abs ` C ) ^ m ) ) ` M ) ) |