| Step |
Hyp |
Ref |
Expression |
| 1 |
|
knoppcnlem1.f |
|- F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) ) |
| 2 |
|
knoppcnlem1.2 |
|- ( ph -> A e. RR ) |
| 3 |
|
knoppcnlem1.3 |
|- ( ph -> M e. NN0 ) |
| 4 |
|
oveq2 |
|- ( y = A -> ( ( ( 2 x. N ) ^ n ) x. y ) = ( ( ( 2 x. N ) ^ n ) x. A ) ) |
| 5 |
4
|
fveq2d |
|- ( y = A -> ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) = ( T ` ( ( ( 2 x. N ) ^ n ) x. A ) ) ) |
| 6 |
5
|
oveq2d |
|- ( y = A -> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) = ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. A ) ) ) ) |
| 7 |
6
|
mpteq2dv |
|- ( y = A -> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) = ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. A ) ) ) ) ) |
| 8 |
|
nn0ex |
|- NN0 e. _V |
| 9 |
8
|
mptex |
|- ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. A ) ) ) ) e. _V |
| 10 |
9
|
a1i |
|- ( ph -> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. A ) ) ) ) e. _V ) |
| 11 |
1 7 2 10
|
fvmptd3 |
|- ( ph -> ( F ` A ) = ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. A ) ) ) ) ) |
| 12 |
|
oveq2 |
|- ( n = M -> ( C ^ n ) = ( C ^ M ) ) |
| 13 |
|
oveq2 |
|- ( n = M -> ( ( 2 x. N ) ^ n ) = ( ( 2 x. N ) ^ M ) ) |
| 14 |
13
|
fvoveq1d |
|- ( n = M -> ( T ` ( ( ( 2 x. N ) ^ n ) x. A ) ) = ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) ) |
| 15 |
12 14
|
oveq12d |
|- ( n = M -> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. A ) ) ) = ( ( C ^ M ) x. ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) ) ) |
| 16 |
15
|
adantl |
|- ( ( ph /\ n = M ) -> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. A ) ) ) = ( ( C ^ M ) x. ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) ) ) |
| 17 |
|
ovexd |
|- ( ph -> ( ( C ^ M ) x. ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) ) e. _V ) |
| 18 |
11 16 3 17
|
fvmptd |
|- ( ph -> ( ( F ` A ) ` M ) = ( ( C ^ M ) x. ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) ) ) |