Step |
Hyp |
Ref |
Expression |
1 |
|
knoppcnlem1.f |
|- F = ( y e. RR |-> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) ) |
2 |
|
knoppcnlem1.2 |
|- ( ph -> A e. RR ) |
3 |
|
knoppcnlem1.3 |
|- ( ph -> M e. NN0 ) |
4 |
|
oveq2 |
|- ( y = A -> ( ( ( 2 x. N ) ^ n ) x. y ) = ( ( ( 2 x. N ) ^ n ) x. A ) ) |
5 |
4
|
fveq2d |
|- ( y = A -> ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) = ( T ` ( ( ( 2 x. N ) ^ n ) x. A ) ) ) |
6 |
5
|
oveq2d |
|- ( y = A -> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) = ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. A ) ) ) ) |
7 |
6
|
mpteq2dv |
|- ( y = A -> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. y ) ) ) ) = ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. A ) ) ) ) ) |
8 |
|
nn0ex |
|- NN0 e. _V |
9 |
8
|
mptex |
|- ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. A ) ) ) ) e. _V |
10 |
9
|
a1i |
|- ( ph -> ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. A ) ) ) ) e. _V ) |
11 |
1 7 2 10
|
fvmptd3 |
|- ( ph -> ( F ` A ) = ( n e. NN0 |-> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. A ) ) ) ) ) |
12 |
|
oveq2 |
|- ( n = M -> ( C ^ n ) = ( C ^ M ) ) |
13 |
|
oveq2 |
|- ( n = M -> ( ( 2 x. N ) ^ n ) = ( ( 2 x. N ) ^ M ) ) |
14 |
13
|
fvoveq1d |
|- ( n = M -> ( T ` ( ( ( 2 x. N ) ^ n ) x. A ) ) = ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) ) |
15 |
12 14
|
oveq12d |
|- ( n = M -> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. A ) ) ) = ( ( C ^ M ) x. ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) ) ) |
16 |
15
|
adantl |
|- ( ( ph /\ n = M ) -> ( ( C ^ n ) x. ( T ` ( ( ( 2 x. N ) ^ n ) x. A ) ) ) = ( ( C ^ M ) x. ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) ) ) |
17 |
|
ovexd |
|- ( ph -> ( ( C ^ M ) x. ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) ) e. _V ) |
18 |
11 16 3 17
|
fvmptd |
|- ( ph -> ( ( F ` A ) ` M ) = ( ( C ^ M ) x. ( T ` ( ( ( 2 x. N ) ^ M ) x. A ) ) ) ) |