Metamath Proof Explorer


Theorem knoppcnlem1

Description: Lemma for knoppcn . (Contributed by Asger C. Ipsen, 4-Apr-2021)

Ref Expression
Hypotheses knoppcnlem1.f F = y n 0 C n T 2 N n y
knoppcnlem1.2 φ A
knoppcnlem1.3 φ M 0
Assertion knoppcnlem1 φ F A M = C M T 2 N M A

Proof

Step Hyp Ref Expression
1 knoppcnlem1.f F = y n 0 C n T 2 N n y
2 knoppcnlem1.2 φ A
3 knoppcnlem1.3 φ M 0
4 oveq2 y = A 2 N n y = 2 N n A
5 4 fveq2d y = A T 2 N n y = T 2 N n A
6 5 oveq2d y = A C n T 2 N n y = C n T 2 N n A
7 6 mpteq2dv y = A n 0 C n T 2 N n y = n 0 C n T 2 N n A
8 nn0ex 0 V
9 8 mptex n 0 C n T 2 N n A V
10 9 a1i φ n 0 C n T 2 N n A V
11 1 7 2 10 fvmptd3 φ F A = n 0 C n T 2 N n A
12 oveq2 n = M C n = C M
13 oveq2 n = M 2 N n = 2 N M
14 13 fvoveq1d n = M T 2 N n A = T 2 N M A
15 12 14 oveq12d n = M C n T 2 N n A = C M T 2 N M A
16 15 adantl φ n = M C n T 2 N n A = C M T 2 N M A
17 ovexd φ C M T 2 N M A V
18 11 16 3 17 fvmptd φ F A M = C M T 2 N M A