Metamath Proof Explorer


Theorem knoppcn

Description: The continuous nowhere differentiable function W ( Knopp, K. (1918). Math. Z. 2, 1-26 ) is, in fact, continuous. (Contributed by Asger C. Ipsen, 4-Apr-2021) (Revised by Asger C. Ipsen, 5-Jul-2021)

Ref Expression
Hypotheses knoppcn.t T = x x + 1 2 x
knoppcn.f F = y n 0 C n T 2 N n y
knoppcn.w W = w i 0 F w i
knoppcn.n φ N
knoppcn.1 φ C
knoppcn.2 φ C < 1
Assertion knoppcn φ W : cn

Proof

Step Hyp Ref Expression
1 knoppcn.t T = x x + 1 2 x
2 knoppcn.f F = y n 0 C n T 2 N n y
3 knoppcn.w W = w i 0 F w i
4 knoppcn.n φ N
5 knoppcn.1 φ C
6 knoppcn.2 φ C < 1
7 nn0uz 0 = 0
8 0zd φ 0
9 1 2 4 5 knoppcnlem11 φ seq 0 f + m 0 z F z m : 0 cn
10 1 2 3 4 5 6 knoppcnlem9 φ seq 0 f + m 0 z F z m u W
11 7 8 9 10 ulmcn φ W : cn