Metamath Proof Explorer


Theorem knoppcld

Description: Closure theorem for Knopp's function. (Contributed by Asger C. Ipsen, 26-Jul-2021)

Ref Expression
Hypotheses knoppcld.t T=xx+12x
knoppcld.f F=yn0CnT2 Nny
knoppcld.w W=wi0Fwi
knoppcld.a φA
knoppcld.n φN
knoppcld.1 φC
knoppcld.2 φC<1
Assertion knoppcld φWA

Proof

Step Hyp Ref Expression
1 knoppcld.t T=xx+12x
2 knoppcld.f F=yn0CnT2 Nny
3 knoppcld.w W=wi0Fwi
4 knoppcld.a φA
5 knoppcld.n φN
6 knoppcld.1 φC
7 knoppcld.2 φC<1
8 1 2 3 5 6 7 knoppcn φW:cn
9 cncff W:cnW:
10 8 9 syl φW:
11 10 4 ffvelcdmd φWA