Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Asger C. Ipsen
Continuous nowhere differentiable functions
knoppcld
Next ⟩
unblimceq0lem
Metamath Proof Explorer
Ascii
Unicode
Theorem
knoppcld
Description:
Closure theorem for Knopp's function.
(Contributed by
Asger C. Ipsen
, 26-Jul-2021)
Ref
Expression
Hypotheses
knoppcld.t
⊢
T
=
x
∈
ℝ
⟼
x
+
1
2
−
x
knoppcld.f
⊢
F
=
y
∈
ℝ
⟼
n
∈
ℕ
0
⟼
C
n
⁢
T
⁡
2
⋅
N
n
⁢
y
knoppcld.w
⊢
W
=
w
∈
ℝ
⟼
∑
i
∈
ℕ
0
F
⁡
w
⁡
i
knoppcld.a
⊢
φ
→
A
∈
ℝ
knoppcld.n
⊢
φ
→
N
∈
ℕ
knoppcld.1
⊢
φ
→
C
∈
ℝ
knoppcld.2
⊢
φ
→
C
<
1
Assertion
knoppcld
⊢
φ
→
W
⁡
A
∈
ℂ
Proof
Step
Hyp
Ref
Expression
1
knoppcld.t
⊢
T
=
x
∈
ℝ
⟼
x
+
1
2
−
x
2
knoppcld.f
⊢
F
=
y
∈
ℝ
⟼
n
∈
ℕ
0
⟼
C
n
⁢
T
⁡
2
⋅
N
n
⁢
y
3
knoppcld.w
⊢
W
=
w
∈
ℝ
⟼
∑
i
∈
ℕ
0
F
⁡
w
⁡
i
4
knoppcld.a
⊢
φ
→
A
∈
ℝ
5
knoppcld.n
⊢
φ
→
N
∈
ℕ
6
knoppcld.1
⊢
φ
→
C
∈
ℝ
7
knoppcld.2
⊢
φ
→
C
<
1
8
1
2
3
5
6
7
knoppcn
⊢
φ
→
W
:
ℝ
⟶
cn
ℂ
9
cncff
⊢
W
:
ℝ
⟶
cn
ℂ
→
W
:
ℝ
⟶
ℂ
10
8
9
syl
⊢
φ
→
W
:
ℝ
⟶
ℂ
11
10
4
ffvelrnd
⊢
φ
→
W
⁡
A
∈
ℂ