Metamath Proof Explorer


Theorem knoppcld

Description: Closure theorem for Knopp's function. (Contributed by Asger C. Ipsen, 26-Jul-2021)

Ref Expression
Hypotheses knoppcld.t T = x x + 1 2 x
knoppcld.f F = y n 0 C n T 2 N n y
knoppcld.w W = w i 0 F w i
knoppcld.a φ A
knoppcld.n φ N
knoppcld.1 φ C
knoppcld.2 φ C < 1
Assertion knoppcld φ W A

Proof

Step Hyp Ref Expression
1 knoppcld.t T = x x + 1 2 x
2 knoppcld.f F = y n 0 C n T 2 N n y
3 knoppcld.w W = w i 0 F w i
4 knoppcld.a φ A
5 knoppcld.n φ N
6 knoppcld.1 φ C
7 knoppcld.2 φ C < 1
8 1 2 3 5 6 7 knoppcn φ W : cn
9 cncff W : cn W :
10 8 9 syl φ W :
11 10 4 ffvelrnd φ W A