Description: Closure theorem for Knopp's function. (Contributed by Asger C. Ipsen, 26-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | knoppcld.t | ⊢ 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) ) | |
knoppcld.f | ⊢ 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶 ↑ 𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) ) | ||
knoppcld.w | ⊢ 𝑊 = ( 𝑤 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) ) | ||
knoppcld.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
knoppcld.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | ||
knoppcld.1 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
knoppcld.2 | ⊢ ( 𝜑 → ( abs ‘ 𝐶 ) < 1 ) | ||
Assertion | knoppcld | ⊢ ( 𝜑 → ( 𝑊 ‘ 𝐴 ) ∈ ℂ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | knoppcld.t | ⊢ 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) ) | |
2 | knoppcld.f | ⊢ 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶 ↑ 𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) ) | |
3 | knoppcld.w | ⊢ 𝑊 = ( 𝑤 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) ) | |
4 | knoppcld.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
5 | knoppcld.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
6 | knoppcld.1 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
7 | knoppcld.2 | ⊢ ( 𝜑 → ( abs ‘ 𝐶 ) < 1 ) | |
8 | 1 2 3 5 6 7 | knoppcn | ⊢ ( 𝜑 → 𝑊 ∈ ( ℝ –cn→ ℂ ) ) |
9 | cncff | ⊢ ( 𝑊 ∈ ( ℝ –cn→ ℂ ) → 𝑊 : ℝ ⟶ ℂ ) | |
10 | 8 9 | syl | ⊢ ( 𝜑 → 𝑊 : ℝ ⟶ ℂ ) |
11 | 10 4 | ffvelrnd | ⊢ ( 𝜑 → ( 𝑊 ‘ 𝐴 ) ∈ ℂ ) |