| Step |
Hyp |
Ref |
Expression |
| 1 |
|
knoppcld.t |
⊢ 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) ) |
| 2 |
|
knoppcld.f |
⊢ 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶 ↑ 𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) ) |
| 3 |
|
knoppcld.w |
⊢ 𝑊 = ( 𝑤 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹 ‘ 𝑤 ) ‘ 𝑖 ) ) |
| 4 |
|
knoppcld.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 5 |
|
knoppcld.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 6 |
|
knoppcld.1 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 7 |
|
knoppcld.2 |
⊢ ( 𝜑 → ( abs ‘ 𝐶 ) < 1 ) |
| 8 |
1 2 3 5 6 7
|
knoppcn |
⊢ ( 𝜑 → 𝑊 ∈ ( ℝ –cn→ ℂ ) ) |
| 9 |
|
cncff |
⊢ ( 𝑊 ∈ ( ℝ –cn→ ℂ ) → 𝑊 : ℝ ⟶ ℂ ) |
| 10 |
8 9
|
syl |
⊢ ( 𝜑 → 𝑊 : ℝ ⟶ ℂ ) |
| 11 |
10 4
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑊 ‘ 𝐴 ) ∈ ℂ ) |