Metamath Proof Explorer


Theorem knoppcld

Description: Closure theorem for Knopp's function. (Contributed by Asger C. Ipsen, 26-Jul-2021)

Ref Expression
Hypotheses knoppcld.t 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) )
knoppcld.f 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) )
knoppcld.w 𝑊 = ( 𝑤 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹𝑤 ) ‘ 𝑖 ) )
knoppcld.a ( 𝜑𝐴 ∈ ℝ )
knoppcld.n ( 𝜑𝑁 ∈ ℕ )
knoppcld.1 ( 𝜑𝐶 ∈ ℝ )
knoppcld.2 ( 𝜑 → ( abs ‘ 𝐶 ) < 1 )
Assertion knoppcld ( 𝜑 → ( 𝑊𝐴 ) ∈ ℂ )

Proof

Step Hyp Ref Expression
1 knoppcld.t 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) )
2 knoppcld.f 𝐹 = ( 𝑦 ∈ ℝ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐶𝑛 ) · ( 𝑇 ‘ ( ( ( 2 · 𝑁 ) ↑ 𝑛 ) · 𝑦 ) ) ) ) )
3 knoppcld.w 𝑊 = ( 𝑤 ∈ ℝ ↦ Σ 𝑖 ∈ ℕ0 ( ( 𝐹𝑤 ) ‘ 𝑖 ) )
4 knoppcld.a ( 𝜑𝐴 ∈ ℝ )
5 knoppcld.n ( 𝜑𝑁 ∈ ℕ )
6 knoppcld.1 ( 𝜑𝐶 ∈ ℝ )
7 knoppcld.2 ( 𝜑 → ( abs ‘ 𝐶 ) < 1 )
8 1 2 3 5 6 7 knoppcn ( 𝜑𝑊 ∈ ( ℝ –cn→ ℂ ) )
9 cncff ( 𝑊 ∈ ( ℝ –cn→ ℂ ) → 𝑊 : ℝ ⟶ ℂ )
10 8 9 syl ( 𝜑𝑊 : ℝ ⟶ ℂ )
11 10 4 ffvelrnd ( 𝜑 → ( 𝑊𝐴 ) ∈ ℂ )